Home
Class 12
MATHS
If D=diag[d(1),d(2),…………..,d(n)] where d...

If `D=diag[d_(1),d_(2),…………..,d_(n)]` where `d_(i)!=0AAi=1,2,3,………..n` then `D^(-1)` is equal to

A

Diagonal matrix

B

`I_(n)`

C

`diag(d_(1)^(-1),d_(2)^(-1),…..d_(n)^(-1))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of a diagonal matrix \( D = \text{diag}[d_1, d_2, \ldots, d_n] \) where \( d_i \neq 0 \) for \( i = 1, 2, \ldots, n \), we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Structure of the Diagonal Matrix**: The matrix \( D \) can be expressed as: \[ D = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix} \] 2. **Identify the Inverse of a Diagonal Matrix**: The inverse of a diagonal matrix is also a diagonal matrix where each diagonal element is the reciprocal of the corresponding diagonal element of the original matrix. Thus, we have: \[ D^{-1} = \text{diag}\left[\frac{1}{d_1}, \frac{1}{d_2}, \ldots, \frac{1}{d_n}\right] \] 3. **Write the Inverse Matrix**: Therefore, the inverse matrix \( D^{-1} \) can be written as: \[ D^{-1} = \begin{pmatrix} \frac{1}{d_1} & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{d_2} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{d_3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{1}{d_n} \end{pmatrix} \] 4. **Final Result**: Thus, the final result for the inverse of the diagonal matrix \( D \) is: \[ D^{-1} = \text{diag}\left[\frac{1}{d_1}, \frac{1}{d_2}, \ldots, \frac{1}{d_n}\right] \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If D=diag(d_1,d_2,d_3,…,d_n)" where "d ne 0" for all " I = 1,2,…,n," then " D^(-1) is equal to

Find the inverse of each of the matrices given below : Let D= "diag" [d_(1),d_(2),d_(3)] where none of d_(1),d_(2),d_(3) is ), prove that D^(-1)="diag" [d_(1)^(-1),d_(2)^(-1),d_(3)^(-1)] .

Statement 1: if D=diag[d_(1),d_(2),,d_(n)], then D^(-1)=diag[d_(1)^(-1),d_(2)^(-1),...,d_(n)^(-1)] Statement 2: if D=diag[d_(1),d_(2),,d_(n)], then D^(n)=diag[d_(1)^(n),d_(2)^(n),...,d_(n)^(n)]

If D=diag[d_(1),d_(2),...d_(n)], then prove that f(D)=diag[f(d_(1)),f(d_(2)),...,f(d_(n))], where f(x) is a polynomial with scalar coefficient.

If D=diag [2, 3, 4] , then D^(-1)=

If A^(20) = [(a,b),(c,d)] where A =[(1,1),(0,2)] then a+b+c+d is equal to

Number of five digit numbers of the form d_(1)d_(2)d_(3)d_(4)d_(5) where d_(i)^( prime)si=1,2,3,4,5 are digits and satisfying d_(1)

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=BX and A=[(1,2),(3,-4)] and B is [(1,0),(0,2)] then X=

    Text Solution

    |

  2. If a,b,c are non-zero real numbers, then the inverse of the matrix A=[...

    Text Solution

    |

  3. If D=diag[d(1),d(2),…………..,d(n)] where d(i)!=0AAi=1,2,3,………..n then D^...

    Text Solution

    |

  4. If A=[(3,4),(2,4)],B=[(-2,-2),(0,-2)] then (A+B)^(-1)=

    Text Solution

    |

  5. If A=diag[d(1),d(2),d(3)] then A^(n) is equal to

    Text Solution

    |

  6. Inverse of the matrix [(3,-2,-1),(-4,1,-1),(2,0,1)] is

    Text Solution

    |

  7. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  8. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  9. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  10. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |

  11. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  12. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  13. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  14. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  15. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  16. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  17. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  18. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  19. Which of the following the following is correct?

    Text Solution

    |

  20. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |