Home
Class 12
MATHS
If A=diag[d(1),d(2),d(3)] then A^(n) is ...

If `A=diag[d_(1),d_(2),d_(3)]` then `A^(n)` is equal to

A

`diag[d_(1)^(n-1),d_(2)^(n-1),d_(3)^(n-1)]`

B

`A`

C

`diag[d_(1)^(n),d_(2)^(n),d_(3)^(n)]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Statement 1: if D=diag[d_(1),d_(2),,d_(n)], then D^(-1)=diag[d_(1)^(-1),d_(2)^(-1),...,d_(n)^(-1)] Statement 2: if D=diag[d_(1),d_(2),,d_(n)], then D^(n)=diag[d_(1)^(n),d_(2)^(n),...,d_(n)^(n)]

If D=diag[d_(1),d_(2),...d_(n)], then prove that f(D)=diag[f(d_(1)),f(d_(2)),...,f(d_(n))], where f(x) is a polynomial with scalar coefficient.

Find the inverse of each of the matrices given below : Let D= "diag" [d_(1),d_(2),d_(3)] where none of d_(1),d_(2),d_(3) is ), prove that D^(-1)="diag" [d_(1)^(-1),d_(2)^(-1),d_(3)^(-1)] .

" If "A=" diag "(4,2,1)" then det "A" is equal to " ......

" If "A=" diag "(4,2,1)" then det "A" is equal to " ......

In Delta ABC as shown,XX_(1)=d_(1);XX_(2)=d_(2);XX_(3)=d_(3) and X is the centre of the circumscribed circle around the Delta ABC,a,b and c as usual are the sides BC,CA and AB respectively.If lambda((a)/(d_(1))+(b)/(d_(2))+(c)/(d_(3)))=(abc)/(d_(1)d_(2)d_(3)), then the value of 'lambda'' is equal to

If A = diag (4, 2, 1) then det A is equal to

If D=diag(d_1,d_2,d_3,…,d_n)" where "d ne 0" for all " I = 1,2,…,n," then " D^(-1) is equal to

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If D=diag[d(1),d(2),…………..,d(n)] where d(i)!=0AAi=1,2,3,………..n then D^...

    Text Solution

    |

  2. If A=[(3,4),(2,4)],B=[(-2,-2),(0,-2)] then (A+B)^(-1)=

    Text Solution

    |

  3. If A=diag[d(1),d(2),d(3)] then A^(n) is equal to

    Text Solution

    |

  4. Inverse of the matrix [(3,-2,-1),(-4,1,-1),(2,0,1)] is

    Text Solution

    |

  5. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  6. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  7. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  8. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |

  9. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  10. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  11. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  12. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  13. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  14. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  15. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  16. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  17. Which of the following the following is correct?

    Text Solution

    |

  18. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  19. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  20. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |