Home
Class 12
MATHS
Inverse of the matrix [(3,-2,-1),(-4,1,-...

Inverse of the matrix `[(3,-2,-1),(-4,1,-1),(2,0,1)]` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of the Matrix The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 3, b = -2, c = -1 \) - \( d = -4, e = 1, f = -1 \) - \( g = 2, h = 0, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 3(1 \cdot 1 - (-1) \cdot 0) - (-2)(-4 \cdot 1 - (-1) \cdot 2) + (-1)(-4 \cdot 0 - 1 \cdot 2) \] \[ = 3(1) - (-2)(-4 + 2) - 1(-2) \] \[ = 3 - (-2)(-2) + 2 \] \[ = 3 - 4 + 2 = 1 \] ### Step 2: Calculate the Cofactor Matrix To find the cofactor matrix, we need to calculate the cofactor for each element of the matrix \( A \). 1. For \( C_{11} \): \[ C_{11} = \text{det}\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = (1)(1) - (-1)(0) = 1 \] 2. For \( C_{12} \): \[ C_{12} = -\text{det}\begin{pmatrix} -4 & -1 \\ 2 & 1 \end{pmatrix} = -((-4)(1) - (-1)(2)) = -(-4 + 2) = 2 \] 3. For \( C_{13} \): \[ C_{13} = \text{det}\begin{pmatrix} -4 & 1 \\ 2 & 0 \end{pmatrix} = (-4)(0) - (1)(2) = -2 \] 4. For \( C_{21} \): \[ C_{21} = -\text{det}\begin{pmatrix} -2 & -1 \\ 0 & 1 \end{pmatrix} = -((-2)(1) - (-1)(0)) = 2 \] 5. For \( C_{22} \): \[ C_{22} = \text{det}\begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix} = (3)(1) - (-1)(2) = 3 + 2 = 5 \] 6. For \( C_{23} \): \[ C_{23} = -\text{det}\begin{pmatrix} 3 & -2 \\ 2 & 0 \end{pmatrix} = -((3)(0) - (-2)(2)) = -4 \] 7. For \( C_{31} \): \[ C_{31} = \text{det}\begin{pmatrix} -2 & -1 \\ 1 & -1 \end{pmatrix} = (-2)(-1) - (-1)(1) = 2 + 1 = 3 \] 8. For \( C_{32} \): \[ C_{32} = -\text{det}\begin{pmatrix} 3 & -1 \\ -4 & -1 \end{pmatrix} = -((3)(-1) - (-1)(-4)) = -(-3 - 4) = 7 \] 9. For \( C_{33} \): \[ C_{33} = \text{det}\begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix} = (3)(1) - (-2)(-4) = 3 - 8 = -5 \] The cofactor matrix is: \[ C = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{pmatrix} \] ### Step 4: Calculate the Inverse of the Matrix The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{pmatrix} \] ### Final Answer: The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

The element in the first row and third column of the inverse of the matrix {:[(1,2,-3),(0,1,2),(0,0,1)]:} , is

The inverse of the matrix [(3,-2),(1,4)] is

The inverse of the matrix [(1,1,1),(1,0,2),(3,1,1)] is

The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

Using elementary tansformations, find the inverse of the matrix A=[(8,4,3),(2,1,1),(1,2,2)]

Find the additive inverse of the matrix A=[(2,3,-1,1),(3,-1,2,2),(1,2,8,7)]

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(3,4),(2,4)],B=[(-2,-2),(0,-2)] then (A+B)^(-1)=

    Text Solution

    |

  2. If A=diag[d(1),d(2),d(3)] then A^(n) is equal to

    Text Solution

    |

  3. Inverse of the matrix [(3,-2,-1),(-4,1,-1),(2,0,1)] is

    Text Solution

    |

  4. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  5. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  6. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  7. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |

  8. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  9. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  10. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  11. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  12. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  13. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  14. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  15. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  16. Which of the following the following is correct?

    Text Solution

    |

  17. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  18. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  19. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  20. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |