Home
Class 12
MATHS
If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 ...

If `A=[(1,-1,1),(2,1,-3),(1,1,1)]` and `10 B=[(4,2,2),(-5,0,alpha),(1,-2,3)]` If B is the inverse of A then `alpha` is

A

`-2`

B

`-1`

C

`2`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha \) such that matrix \( B \) is the inverse of matrix \( A \), we will follow these steps: Given: \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix} \] \[ 10B = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} \] This implies: \[ B = \frac{1}{10} \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( \alpha \), we need to calculate the product \( AB \) and set it equal to the identity matrix \( I \). \[ AB = A \cdot B = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix} \cdot \frac{1}{10} \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix} \] ### Step 2: Compute the elements of \( AB \) **Element (1,1):** \[ 1 \cdot 4 + (-1) \cdot (-5) + 1 \cdot 1 = 4 + 5 + 1 = 10 \] **Element (1,2):** \[ 1 \cdot 2 + (-1) \cdot 0 + 1 \cdot (-2) = 2 + 0 - 2 = 0 \] **Element (1,3):** \[ 1 \cdot 2 + (-1) \cdot \alpha + 1 \cdot 3 = 2 - \alpha + 3 = 5 - \alpha \] **Element (2,1):** \[ 2 \cdot 4 + 1 \cdot (-5) + (-3) \cdot 1 = 8 - 5 - 3 = 0 \] **Element (2,2):** \[ 2 \cdot 2 + 1 \cdot 0 + (-3) \cdot (-2) = 4 + 0 + 6 = 10 \] **Element (2,3):** \[ 2 \cdot 2 + 1 \cdot \alpha + (-3) \cdot 3 = 4 + \alpha - 9 = \alpha - 5 \] **Element (3,1):** \[ 1 \cdot 4 + 1 \cdot (-5) + 1 \cdot 1 = 4 - 5 + 1 = 0 \] **Element (3,2):** \[ 1 \cdot 2 + 1 \cdot 0 + 1 \cdot (-2) = 2 + 0 - 2 = 0 \] **Element (3,3):** \[ 1 \cdot 2 + 1 \cdot \alpha + 1 \cdot 3 = 2 + \alpha + 3 = \alpha + 5 \] ### Step 3: Form the product matrix Putting all these together, we have: \[ AB = \frac{1}{10} \begin{pmatrix} 10 & 0 & 5 - \alpha \\ 0 & 10 & \alpha - 5 \\ 0 & 0 & \alpha + 5 \end{pmatrix} \] ### Step 4: Set \( AB \) equal to the identity matrix For \( AB \) to equal the identity matrix \( I \), we need: \[ AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] This gives us the following equations: 1. \( \frac{10}{10} = 1 \) (true) 2. \( \frac{10}{10} = 1 \) (true) 3. \( \frac{5 - \alpha}{10} = 0 \) ⇒ \( 5 - \alpha = 0 \) ⇒ \( \alpha = 5 \) 4. \( \frac{\alpha - 5}{10} = 0 \) ⇒ \( \alpha - 5 = 0 \) ⇒ \( \alpha = 5 \) 5. \( \frac{\alpha + 5}{10} = 1 \) ⇒ \( \alpha + 5 = 10 \) ⇒ \( \alpha = 5 \) ### Conclusion Thus, the value of \( \alpha \) is \( 5 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(1,-2,3)]. If B is the inverse of A, then alpha is :

Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and B=[(4,2,2),(-5,0,alpha),(1,-2,3)] If B is the inverse of matrix A , then alpha= (A) 2 (B) -2 (C) 5 (D) -5

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B =[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If A=[(1,0),(3,-1),(-5,2)] and B=[(1,-2),(-2,2),(1,1)] , then find the matrix 'X' such that 3A + X = 5B.

If A and B are non - singular matrices of order three such that adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8 , then the value of alpha is equal to

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=diag[d(1),d(2),d(3)] then A^(n) is equal to

    Text Solution

    |

  2. Inverse of the matrix [(3,-2,-1),(-4,1,-1),(2,0,1)] is

    Text Solution

    |

  3. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  4. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  5. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  6. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |

  7. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  8. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  9. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  10. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  11. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  12. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  13. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  14. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  15. Which of the following the following is correct?

    Text Solution

    |

  16. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  17. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  18. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  19. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  20. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |