Home
Class 12
MATHS
A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),...

`A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)]`
`A^(-1)=1/6(A^(2)+CA+DI)` then C and D equal to

A

`-11,6`

B

`-6,11`

C

`6,11`

D

`-6,-11`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of C and D in the equation \( A^{-1} = \frac{1}{6}(A^2 + CA + DI) \), we will follow these steps: ### Step 1: Find the characteristic polynomial of matrix A. The characteristic polynomial of a matrix \( A \) is given by \( \text{det}(A - \lambda I) = 0 \). Given: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{pmatrix} \] \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] We need to compute \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & -2 & 4 - \lambda \end{pmatrix} \] Now, we compute the determinant: \[ \text{det}(A - \lambda I) = (1 - \lambda) \text{det}\begin{pmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{pmatrix} \] Calculating the 2x2 determinant: \[ \text{det}\begin{pmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{pmatrix} = (1 - \lambda)(4 - \lambda) - (-2)(1) = (1 - \lambda)(4 - \lambda) + 2 \] Expanding this: \[ = 4 - 5\lambda + \lambda^2 + 2 = \lambda^2 - 5\lambda + 6 \] Thus, the characteristic polynomial becomes: \[ \text{det}(A - \lambda I) = (1 - \lambda)(\lambda^2 - 5\lambda + 6) = 0 \] ### Step 2: Solve for the eigenvalues. Setting the characteristic polynomial to zero: \[ (1 - \lambda)(\lambda^2 - 5\lambda + 6) = 0 \] The roots of \( \lambda^2 - 5\lambda + 6 = 0 \) can be found using the quadratic formula: \[ \lambda = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm 1}{2} \] This gives us: \[ \lambda = 3 \quad \text{and} \quad \lambda = 2 \] Thus, the eigenvalues are \( \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3 \). ### Step 3: Write the characteristic equation. From the eigenvalues, we can write the characteristic equation: \[ A^3 - 6A^2 + 11A - 6I = 0 \] ### Step 4: Relate the characteristic equation to the given equation. We have: \[ A^{-1} = \frac{1}{6}(A^2 + CA + DI) \] Multiplying both sides by \( A \): \[ I = \frac{1}{6}(A^3 + CA^2 + DIA) \] This can be rearranged to: \[ 6I = A^3 + CA^2 + DIA \] Now, we can compare this with the characteristic equation: \[ A^3 - 6A^2 + 11A - 6I = 0 \] ### Step 5: Compare coefficients. From the comparison: \[ A^3 + CA^2 + DIA = 6I \] We can equate coefficients: - Coefficient of \( A^2 \): \( C = -6 \) - Coefficient of \( A \): \( D = 11 \) ### Final Result: Thus, the values of \( C \) and \( D \) are: \[ C = -6, \quad D = 11 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+cA+dI], where c,d in R, then pair of values (c,d)

A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2,...

    Text Solution

    |

  2. The inverse of a symmetric matrix is a matrix which is

    Text Solution

    |

  3. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  4. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |

  5. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  6. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  7. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  8. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  9. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  10. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  11. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  12. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  13. Which of the following the following is correct?

    Text Solution

    |

  14. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  15. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  16. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  17. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  18. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  19. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  20. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |