Home
Class 12
MATHS
Let F(alpha)=[(cos alpha, -sin alpha, 0)...

Let `F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0,1)]` then `F(alpha). F (beta)` is equal to

A

`F(alpha beta)`

B

`F((alpha)/(beta))`

C

`F(alpha+beta)`

D

`F(alpha-beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to multiply the matrices \( F(\alpha) \) and \( F(\beta) \). Let's denote: \[ F(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ F(\beta) = \begin{pmatrix} \cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now, we will perform the matrix multiplication \( F(\alpha) \cdot F(\beta) \). ### Step 1: Multiply the first row of \( F(\alpha) \) with each column of \( F(\beta) \) 1. **First Column:** \[ \text{First row} \cdot \text{First column} = \cos \alpha \cdot \cos \beta + (-\sin \alpha) \cdot \sin \beta = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] 2. **Second Column:** \[ \text{First row} \cdot \text{Second column} = \cos \alpha \cdot (-\sin \beta) + (-\sin \alpha) \cdot \cos \beta = -\cos \alpha \sin \beta - \sin \alpha \cos \beta \] 3. **Third Column:** \[ \text{First row} \cdot \text{Third column} = \cos \alpha \cdot 0 + (-\sin \alpha) \cdot 0 + 0 \cdot 1 = 0 \] ### Step 2: Multiply the second row of \( F(\alpha) \) with each column of \( F(\beta) \) 1. **First Column:** \[ \text{Second row} \cdot \text{First column} = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] 2. **Second Column:** \[ \text{Second row} \cdot \text{Second column} = \sin \alpha \cdot (-\sin \beta) + \cos \alpha \cdot \cos \beta = -\sin \alpha \sin \beta + \cos \alpha \cos \beta \] 3. **Third Column:** \[ \text{Second row} \cdot \text{Third column} = \sin \alpha \cdot 0 + \cos \alpha \cdot 0 + 0 \cdot 1 = 0 \] ### Step 3: Multiply the third row of \( F(\alpha) \) with each column of \( F(\beta) \) 1. **First Column:** \[ \text{Third row} \cdot \text{First column} = 0 \cdot \cos \beta + 0 \cdot \sin \beta + 1 \cdot 0 = 0 \] 2. **Second Column:** \[ \text{Third row} \cdot \text{Second column} = 0 \cdot (-\sin \beta) + 0 \cdot \cos \beta + 1 \cdot 0 = 0 \] 3. **Third Column:** \[ \text{Third row} \cdot \text{Third column} = 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 1 \] ### Step 4: Combine the results Now we can combine all the results to form the resulting matrix: \[ F(\alpha) \cdot F(\beta) = \begin{pmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -(\cos \alpha \sin \beta + \sin \alpha \cos \beta) & 0 \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & \cos \alpha \cos \beta - \sin \alpha \sin \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Simplify using trigonometric identities Using the angle addition formulas: - \( \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \) - \( \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \) We can rewrite the matrix as: \[ F(\alpha) \cdot F(\beta) = \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & 0 \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Final Result Thus, we have: \[ F(\alpha) \cdot F(\beta) = F(\alpha + \beta) \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Let F(alpha)=[[cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]], where alpha in R Then (F(alpha))^(-1) is equal to F(alpha^(-1)) b.F(-alpha) c.F(2 alpha)d.-[[1,11,0]]

If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1 is equal to (A) F(-alpha)G(-beta) (B) G(-beta)F(-alpha0 (C) F(alpha^-1)G(beta^-1) (D) G(beta^-1)F(alpha^-1)

If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,0),(0,k)] , then k is equal to

Let F(alpha)=[cos alpha-sin alpha0sin alpha cos alpha0001] and G(beta)=[cos beta0sin beta010-sin beta0cos beta] Show that [F(alpha)]^(-1)=F(-alpha)(ii)[G(beta)]^(-1)=G(-beta)( iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(...

    Text Solution

    |

  2. If A=[(0,0,1),(0,-1,0),(1,0,0)] then A^(-1)=

    Text Solution

    |

  3. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  4. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  5. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  6. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  7. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  8. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  9. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  10. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  11. Which of the following the following is correct?

    Text Solution

    |

  12. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  13. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  14. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  15. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  16. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  17. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  18. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  19. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  20. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |