Home
Class 12
MATHS
If A=[(cos^(2) theta, cos theta sin thet...

If `A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(2)theta)]`
and `B=[(cos^(2) phi, cos phi sin phi),(cos phi sin phi, sin^(2)phi)]` are the two matrices such that the product AB is the null matrix then `theta-phi` is equal to

A

0

B

multiple of `pi`

C

on odd multiple of `pi//2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \theta - \phi \) given that the product of the matrices \( A \) and \( B \) is the null matrix. Given: \[ A = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \] \[ B = \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix} \] We need to compute the product \( AB \) and set it equal to the null matrix. ### Step 1: Calculate the product \( AB \) The product of two matrices \( A \) and \( B \) is given by: \[ AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \] Calculating \( AB \): \[ AB = \begin{pmatrix} \cos^2 \theta \cdot \cos^2 \phi + \cos \theta \sin \theta \cdot \cos \phi \sin \phi & \cos^2 \theta \cdot \cos \phi \sin \phi + \cos \theta \sin \theta \cdot \sin^2 \phi \\ \cos \theta \sin \theta \cdot \cos^2 \phi + \sin^2 \theta \cdot \cos \phi \sin \phi & \cos \theta \sin \theta \cdot \cos \phi \sin \phi + \sin^2 \theta \cdot \sin^2 \phi \end{pmatrix} \] ### Step 2: Simplify the elements of \( AB \) 1. First element: \[ \cos^2 \theta \cdot \cos^2 \phi + \cos \theta \sin \theta \cdot \cos \phi \sin \phi = \cos^2 \theta \cos^2 \phi + \frac{1}{2} \sin(2\theta) \sin(2\phi) \] 2. Second element: \[ \cos^2 \theta \cdot \cos \phi \sin \phi + \cos \theta \sin \theta \cdot \sin^2 \phi = \frac{1}{2} \sin(2\theta) \sin(2\phi) + \cos^2 \theta \sin^2 \phi \] 3. Third element: \[ \cos \theta \sin \theta \cdot \cos^2 \phi + \sin^2 \theta \cdot \cos \phi \sin \phi = \frac{1}{2} \sin(2\theta) \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi \] 4. Fourth element: \[ \cos \theta \sin \theta \cdot \cos \phi \sin \phi + \sin^2 \theta \cdot \sin^2 \phi = \frac{1}{2} \sin(2\theta) \sin(2\phi) + \sin^2 \theta \sin^2 \phi \] ### Step 3: Set the product equal to the null matrix Setting \( AB = 0 \): \[ \begin{pmatrix} \cos^2 \theta \cos^2 \phi + \frac{1}{2} \sin(2\theta) \sin(2\phi) & \frac{1}{2} \sin(2\theta) \sin(2\phi) + \cos^2 \theta \sin^2 \phi \\ \frac{1}{2} \sin(2\theta) \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi & \frac{1}{2} \sin(2\theta) \sin(2\phi) + \sin^2 \theta \sin^2 \phi \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Step 4: Analyze the equations From the first element: \[ \cos^2 \theta \cos^2 \phi + \frac{1}{2} \sin(2\theta) \sin(2\phi) = 0 \] This implies: \[ \cos^2 \theta \cos^2 \phi = -\frac{1}{2} \sin(2\theta) \sin(2\phi) \] ### Step 5: Use trigonometric identities Using the identity \( \cos(x - y) = \cos x \cos y + \sin x \sin y \), we can relate the equations to \( \cos(\theta - \phi) \). ### Step 6: Solve for \( \theta - \phi \) Since \( AB = 0 \), we can conclude: \[ \cos(\theta - \phi) = 0 \] This means: \[ \theta - \phi = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] Thus, \( \theta - \phi \) can be expressed as: \[ \theta - \phi = (2n + 1) \frac{\pi}{2} \] ### Final Answer The value of \( \theta - \phi \) is an odd multiple of \( \frac{\pi}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi), (cos phi sin phi,sin^2 phi)]=0

If A=[(cos^2theta,costheta sintheta),(cos theta sintheta, sin^2theta)] and B=[(cos^2 phi, cos phi sin phi),(cos phisinphi,sin^2phi)], show that AB is zero matrix if theta and phi differ by an odd multiple of pi/2.

If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]] and B=[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]] then theta-phi is

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

If theta-phi=pi/2, then show that [[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]]*[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]]=0

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If E(theta)=[(cos theta, sin theta),(-sin theta, cos theta)], then E(a...

    Text Solution

    |

  2. If {:E(theta)=[(cos^2 theta,costhetasintheta),(costhetasintheta,sin^2t...

    Text Solution

    |

  3. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  4. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  5. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  6. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  7. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  8. Which of the following the following is correct?

    Text Solution

    |

  9. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  10. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  11. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  12. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  13. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  14. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  15. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  16. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  17. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  18. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  19. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  20. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |