Home
Class 12
MATHS
Let F(alpha)=[(cos alpha, -sin alpha, 0)...

Let `F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0,1)]` where alpha in `R`.
Then `[F(alpha)]^(-1)` is equal to

A

`F(-alpha)`

B

`F(alpha^(-1))`

C

`F(2alpha)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( F(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( F(\alpha) \) The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( F(\alpha) \): - \( a = \cos \alpha \) - \( b = -\sin \alpha \) - \( c = 0 \) - \( d = \sin \alpha \) - \( e = \cos \alpha \) - \( f = 0 \) - \( g = 0 \) - \( h = 0 \) - \( i = 1 \) Calculating the determinant: \[ \text{det}(F(\alpha)) = \cos \alpha ( \cos \alpha \cdot 1 - 0 \cdot 0 ) - (-\sin \alpha)(\sin \alpha \cdot 1 - 0 \cdot 0) + 0 \] \[ = \cos^2 \alpha + \sin^2 \alpha = 1 \] ### Step 2: Verify the Determinant is Non-zero Since \( \text{det}(F(\alpha)) = 1 \neq 0 \), the inverse \( F(\alpha)^{-1} \) exists. ### Step 3: Find the Adjoint of \( F(\alpha) \) The adjoint of a matrix is obtained by taking the transpose of the cofactor matrix. The cofactor matrix \( C \) for \( F(\alpha) \) is calculated as follows: 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det} \begin{pmatrix} \cos \alpha & 0 \\ 0 & 1 \end{pmatrix} = \cos \alpha \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det} \begin{pmatrix} \sin \alpha & 0 \\ 0 & 1 \end{pmatrix} = -\sin \alpha \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det} \begin{pmatrix} \sin \alpha & \cos \alpha \\ 0 & 0 \end{pmatrix} = 0 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det} \begin{pmatrix} -\sin \alpha & 0 \\ 0 & 1 \end{pmatrix} = \sin \alpha \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det} \begin{pmatrix} \cos \alpha & 0 \\ 0 & 1 \end{pmatrix} = \cos \alpha \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ 0 & 0 \end{pmatrix} = 0 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det} \begin{pmatrix} -\sin \alpha & 0 \\ \cos \alpha & 0 \end{pmatrix} = 0 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det} \begin{pmatrix} \cos \alpha & 0 \\ \sin \alpha & 0 \end{pmatrix} = 0 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \cos^2 \alpha + \sin^2 \alpha = 1 \] Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Find the Adjoint Matrix The adjoint \( \text{adj}(F(\alpha)) \) is the transpose of the cofactor matrix: \[ \text{adj}(F(\alpha)) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Calculate the Inverse Using the formula for the inverse: \[ F(\alpha)^{-1} = \frac{1}{\text{det}(F(\alpha))} \cdot \text{adj}(F(\alpha)) \] Since \( \text{det}(F(\alpha)) = 1 \): \[ F(\alpha)^{-1} = \text{adj}(F(\alpha)) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Final Result Thus, the inverse of the matrix \( F(\alpha) \) is: \[ F(\alpha)^{-1} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

Let F(alpha)=[[cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]], where alpha in R Then (F(alpha))^(-1) is equal to F(alpha^(-1)) b.F(-alpha) c.F(2 alpha)d.-[[1,11,0]]

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

If A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}] , then

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If A=[[cosalpha, sin alpha] , [-sin alpha, cos alpha]] and A^(-1)=A' then alpha=

(sin alpha)/(1+cos alpha)+(1+cos alpha)/(sin alpha)=2cosec alpha

If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,0),(0,k)] , then k is equal to

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(...

    Text Solution

    |

  2. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  3. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  4. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  5. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  6. Which of the following the following is correct?

    Text Solution

    |

  7. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  8. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  9. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  10. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  11. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  12. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  13. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  14. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  15. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  16. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  17. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  18. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |

  19. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  20. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |