Home
Class 12
MATHS
If F(alpha)=[(cos alpha, -sin alpha, 0),...

If `F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0,1)]` and `G(beta)=[(cos beta, 0, sin beta),(0,1,0),(-sin beta, 0, cos beta)]`, then `[F(alpha)G(beta)]^(-1)` is equal to

A

`F(-alpha)G(-beta)`

B

`F(alpha^(-1))G(beta^(-1))`

C

`G(-beta)F(-alpha)`

D

`G(beta^(-1))F(alpha^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the product of the matrices \( F(\alpha) \) and \( G(\beta) \), we will follow these steps: ### Step 1: Define the matrices We have: \[ F(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] and \[ G(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix} \] ### Step 2: Multiply the matrices \( F(\alpha) \) and \( G(\beta) \) To find \( F(\alpha)G(\beta) \), we perform matrix multiplication: \[ F(\alpha)G(\beta) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix} \] Calculating the product: - The first row: - First element: \( \cos \alpha \cdot \cos \beta + (-\sin \alpha) \cdot 0 + 0 \cdot (-\sin \beta) = \cos \alpha \cos \beta \) - Second element: \( \cos \alpha \cdot 0 + (-\sin \alpha) \cdot 1 + 0 \cdot 0 = -\sin \alpha \) - Third element: \( \cos \alpha \cdot \sin \beta + (-\sin \alpha) \cdot 0 + 0 \cdot \cos \beta = \cos \alpha \sin \beta \) - The second row: - First element: \( \sin \alpha \cdot \cos \beta + \cos \alpha \cdot 0 + 0 \cdot (-\sin \beta) = \sin \alpha \cos \beta \) - Second element: \( \sin \alpha \cdot 0 + \cos \alpha \cdot 1 + 0 \cdot 0 = \cos \alpha \) - Third element: \( \sin \alpha \cdot \sin \beta + \cos \alpha \cdot 0 + 0 \cdot \cos \beta = \sin \alpha \sin \beta \) - The third row: - First element: \( 0 \cdot \cos \beta + 0 \cdot 0 + 1 \cdot (-\sin \beta) = -\sin \beta \) - Second element: \( 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 = 0 \) - Third element: \( 0 \cdot \sin \beta + 0 \cdot 0 + 1 \cdot \cos \beta = \cos \beta \) Thus, we have: \[ F(\alpha)G(\beta) = \begin{pmatrix} \cos \alpha \cos \beta & -\sin \alpha & \cos \alpha \sin \beta \\ \sin \alpha \cos \beta & \cos \alpha & \sin \alpha \sin \beta \\ -\sin \beta & 0 & \cos \beta \end{pmatrix} \] ### Step 3: Find the inverse of the product To find the inverse of a \( 3 \times 3 \) matrix, we can use the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] However, for rotation matrices, we know that the inverse of a rotation matrix is its transpose. Thus, we can take the transpose of \( F(\alpha)G(\beta) \): \[ [F(\alpha)G(\beta)]^{-1} = (F(\alpha)G(\beta))^T \] Calculating the transpose: \[ [F(\alpha)G(\beta)]^T = \begin{pmatrix} \cos \alpha \cos \beta & \sin \alpha \cos \beta & -\sin \beta \\ -\sin \alpha & \cos \alpha & 0 \\ \cos \alpha \sin \beta & \sin \alpha \sin \beta & \cos \beta \end{pmatrix} \] ### Final Result Thus, the inverse of \( F(\alpha)G(\beta) \) is: \[ [F(\alpha)G(\beta)]^{-1} = \begin{pmatrix} \cos \alpha \cos \beta & \sin \alpha \cos \beta & -\sin \beta \\ -\sin \alpha & \cos \alpha & 0 \\ \cos \alpha \sin \beta & \sin \alpha \sin \beta & \cos \beta \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Let F(alpha)=[cos alpha-sin alpha0sin alpha cos alpha0001] and G(beta)=[cos beta0sin beta010-sin beta0cos beta] Show that [F(alpha)]^(-1)=F(-alpha)(ii)[G(beta)]^(-1)=G(-beta)( iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (alpha + beta),- sin (alpha + beta),1)| , then

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

Delta=det[[0,sin alpha,-cos alpha-sin alpha,0,sin betacos alpha,-sin beta,0]]

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] ...

    Text Solution

    |

  2. Let F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,...

    Text Solution

    |

  3. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  4. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  5. Which of the following the following is correct?

    Text Solution

    |

  6. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  7. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  8. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  9. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  10. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  11. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  12. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  13. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  14. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  15. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  16. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |

  18. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  19. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  20. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |