Home
Class 12
MATHS
If A=[(1,0),(1//2,1)] then A^(50) is...

If `A=[(1,0),(1//2,1)]` then `A^(50)` is

A

`[(1,0),(0,50)]`

B

`[(1,0),(50,1)]`

C

`[(1,25),(0,1)]`

D

`[(1,0),(25,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{50} \) for the matrix \( A = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \), we can follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \] Calculating the entries: - First row, first column: \( 1 \cdot 1 + 0 \cdot \frac{1}{2} = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1 \) - Second row, second column: \( \frac{1}{2} \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \] Calculating the entries: - First row, first column: \( 1 \cdot 1 + 0 \cdot \frac{1}{2} = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2} \) - Second row, second column: \( 1 \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \) Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \] ### Step 3: Generalize \( A^n \) From the calculations, we can see a pattern emerging. The general form for \( A^n \) can be expressed as: \[ A^n = \begin{pmatrix} 1 & 0 \\ \frac{n}{2} & 1 \end{pmatrix} \] ### Step 4: Calculate \( A^{50} \) Now, substituting \( n = 50 \): \[ A^{50} = \begin{pmatrix} 1 & 0 \\ \frac{50}{2} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 25 & 1 \end{pmatrix} \] ### Final Result Thus, the final result is: \[ A^{50} = \begin{pmatrix} 1 & 0 \\ 25 & 1 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If P= [(1,0),(1//2,1)] , then P^(50) is "

If A=[(1,0),(1/2,1)] then find the value of A^50

For n>=3,A^(n)=A^(n-2)+A^(2)-1, where A=[[1,0,01,0,10,1,0]] Determine A^(50) and A^(49)

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The values of |A^(50| equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

If [[1,0,01,0,10,1,0]] then A A^(3)-A^(2)=A-I(B)Det(A^(2010)-1),=0(C)A^(50)=[[1,0,025,1,025,0,1]][[25,1,025,0,1]]

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  2. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  3. Which of the following the following is correct?

    Text Solution

    |

  4. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  5. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  6. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  7. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  8. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  9. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  10. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  11. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  12. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  13. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  14. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  19. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  20. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |