Home
Class 12
MATHS
If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then d...

If `A=[(1,2,-1),(-1,1,2),(2,-1,1)]` then det `[adj(adjA)]=`

A

`12^(4)`

B

`13^(4)`

C

`14^(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the adjoint of the adjoint of matrix \( A \). The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{pmatrix} \] ### Step 1: Calculate the Determinant of \( A \) We can calculate the determinant of \( A \) using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: - \( a, b, c \) are the elements of the first row, - \( d, e, f \) are the elements of the second row, - \( g, h, i \) are the elements of the third row. For our matrix \( A \): \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - 2 \cdot (-1)) - 2 \cdot (-1 \cdot 1 - 2 \cdot 2) + (-1) \cdot (-1 \cdot (-1) - 1 \cdot 2) \] Calculating each term: - First term: \( 1 \cdot (1 + 2) = 1 \cdot 3 = 3 \) - Second term: \( -2 \cdot (-1 - 4) = -2 \cdot (-5) = 10 \) - Third term: \( -1 \cdot (1 - 2) = -1 \cdot (-1) = 1 \) Putting it all together: \[ \text{det}(A) = 3 + 10 + 1 = 14 \] ### Step 2: Use the Formula for the Determinant of the Adjoint The formula for the determinant of the adjoint of a matrix \( A \) is given by: \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{n-1} \] Where \( n \) is the order of the matrix. Since \( A \) is a \( 3 \times 3 \) matrix, \( n = 3 \). Thus, \[ \text{det}(\text{adj}(A)) = (\text{det}(A))^{3-1} = (\text{det}(A))^2 \] ### Step 3: Calculate the Determinant of the Adjoint of \( A \) Now substituting the value of \( \text{det}(A) \): \[ \text{det}(\text{adj}(A)) = (14)^{2} = 196 \] ### Step 4: Calculate the Determinant of the Adjoint of the Adjoint of \( A \) Again applying the formula for the adjoint: \[ \text{det}(\text{adj}(\text{adj}(A))) = (\text{det}(\text{adj}(A)))^{n-1} = (\text{det}(\text{adj}(A)))^{2} \] Substituting the value we found: \[ \text{det}(\text{adj}(\text{adj}(A))) = (196)^{2} = 38416 \] ### Final Answer Thus, the final answer is: \[ \text{det}(\text{adj}(\text{adj}(A))) = 38416 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (A)) is

If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

If A=[(1,2,0),(-1,1,2),(2,-1,1)] then det (Adj(AdjA))= (A) 13 (B) 13^2 (C) 13^4 (D) none of these

If A=[[1,2,-1-1,1,22,-1,1]], then det (adj (adj A)

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

If A={:[(2,-1,1),(1,2,1),(-1,1,3)]:}" then :"|adj(adjA)|=

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  2. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  3. Which of the following the following is correct?

    Text Solution

    |

  4. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  5. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  6. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  7. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  8. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  9. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  10. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  11. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  12. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  13. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  14. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  19. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  20. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |