Home
Class 12
MATHS
The equations x+2y+3z=1, 2x+y+3z=2,5x+5y...

The equations `x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4` have

A

unique solutions

B

infinite many solutions

C

inconsistent

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of solutions for the given system of equations: 1. **Write the equations in matrix form**: The given equations are: \[ \begin{align*} x + 2y + 3z &= 1 \quad (1) \\ 2x + y + 3z &= 2 \quad (2) \\ 5x + 5y + 9z &= 4 \quad (3) \end{align*} \] We can represent this system in the form \(Ax = b\), where: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \] 2. **Calculate the determinant of matrix \(A\)**: To find the determinant of matrix \(A\), we use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \(A\): \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9 \end{pmatrix} \] We can calculate the determinant as follows: \[ \text{det}(A) = 1 \cdot (1 \cdot 9 - 3 \cdot 5) - 2 \cdot (2 \cdot 9 - 3 \cdot 5) + 3 \cdot (2 \cdot 5 - 1 \cdot 5) \] Simplifying each term: \[ = 1 \cdot (9 - 15) - 2 \cdot (18 - 15) + 3 \cdot (10 - 5) \] \[ = 1 \cdot (-6) - 2 \cdot 3 + 3 \cdot 5 \] \[ = -6 - 6 + 15 \] \[ = 3 \] 3. **Determine the nature of the solutions**: Since \(\text{det}(A) \neq 0\), the system of equations has a unique solution. **Final Conclusion**: The equations \(x + 2y + 3z = 1\), \(2x + y + 3z = 2\), and \(5x + 5y + 9z = 4\) have a unique solution. ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

The equations x+2y+3z=1 2x+y+3z=1 5x+5y+9z=4

The equations x + 2y + 3z = 1,2x + y + 3x = 2, 5x + 5y + 9 z = 5 have

For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6z=1 are

System of linear equations in x,y,z 2x+y+z=1,x-2y+z=2,3x-y +2z=3 have infinite solutions which

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3 are

The system of equations x+2y +3z =4, 2x+3y+4z=5,3x+4y+5z=6 has

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  2. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  3. Which of the following the following is correct?

    Text Solution

    |

  4. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  5. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  6. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  7. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  8. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  9. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  10. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  11. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  12. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  13. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  14. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  19. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  20. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |