Home
Class 12
MATHS
x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,...

`x+y+z=6`
`x-y+z=2`
`2x+y-z=1`
then x,y,z are respectively

A

3,2,1

B

1,2,3

C

2,1,3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( x + y + z = 6 \) 2. \( x - y + z = 2 \) 3. \( 2x + y - z = 1 \) we can use Cramer's Rule, which involves calculating determinants. ### Step 1: Write the equations in matrix form The equations can be represented in the form \( AX = B \), where: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} \] ### Step 2: Calculate the determinant \( D \) of matrix \( A \) \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{vmatrix} \] Calculating the determinant: \[ D = 1 \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + 1 \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = (-1)(-1) - (1)(1) = 1 - 1 = 0 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (1)(2) = -1 - 2 = -3 \) 3. \( \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-1)(2) = 1 + 2 = 3 \) Substituting back into the determinant \( D \): \[ D = 1(0) - 1(-3) + 1(3) = 0 + 3 + 3 = 6 \] ### Step 3: Calculate the determinants \( D_x, D_y, D_z \) **For \( D_x \)** (replace the first column of \( A \) with \( B \)): \[ D_x = \begin{vmatrix} 6 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \] Calculating \( D_x \): \[ D_x = 6 \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} - 1 \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} + 1 \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = 0 \) 2. \( \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (1)(1) = -2 - 1 = -3 \) 3. \( \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-1)(1) = 2 + 1 = 3 \) Substituting back into \( D_x \): \[ D_x = 6(0) - 1(-3) + 1(3) = 0 + 3 + 3 = 6 \] **For \( D_y \)** (replace the second column of \( A \) with \( B \)): \[ D_y = \begin{vmatrix} 1 & 6 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & -1 \end{vmatrix} \] Calculating \( D_y \): \[ D_y = 1 \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} - 6 \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = -3 \) 3. \( \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3 \) Substituting back into \( D_y \): \[ D_y = 1(-3) - 6(-3) + 1(-3) = -3 + 18 - 3 = 12 \] **For \( D_z \)** (replace the third column of \( A \) with \( B \)): \[ D_z = \begin{vmatrix} 1 & 1 & 6 \\ 1 & -1 & 2 \\ 2 & 1 & 1 \end{vmatrix} \] Calculating \( D_z \): \[ D_z = 1 \begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} + 6 \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} = -1 - 2 = -3 \) 2. \( \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3 \) 3. \( \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 1 + 2 = 3 \) Substituting back into \( D_z \): \[ D_z = 1(-3) - 1(-3) + 6(3) = -3 + 3 + 18 = 18 \] ### Step 4: Calculate the values of \( x, y, z \) Using Cramer’s Rule: \[ x = \frac{D_x}{D} = \frac{6}{6} = 1 \] \[ y = \frac{D_y}{D} = \frac{12}{6} = 2 \] \[ z = \frac{D_z}{D} = \frac{18}{6} = 3 \] ### Final Answer Thus, the values of \( x, y, z \) are: \[ x = 1, \quad y = 2, \quad z = 3 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

2x+y-z=1 x-y+z=2 3x+y-2z=-1

x+y+z=4 2x-y+z=-1 2x+y-3z=-9

x+y+z=1 x-2y+3z=2 5x-3y+z=3

x+y-z=1 3x+y-2z=3 x-y-z=-1

x-y+z=1 2x+y-z=2 x-2y-z=4

2x + 3y-5z = 7, x + y + z = 6,3x-4y + 2z = 1, then x =

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  2. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  3. Which of the following the following is correct?

    Text Solution

    |

  4. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  5. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  6. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  7. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  8. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  9. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  10. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  11. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  12. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  13. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  14. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  19. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  20. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |