Home
Class 12
MATHS
A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(...

`A=[(2,0,1),(1,1,0),(1,0,1)],AU_(1)=[(1),(0),(0)]_(3xx1)'AU_(2)=[(2),(3),(0)]_(3xx1)` and `AU_(3)=[(3),(2),(1)]_(3xx1)`
If `U_(1),U_(2),U_(3)` are columns of matrix U, then
Sum of elements of `U^(-1)` is

A

`-1/3`

B

`1/12`

C

`-1/4`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the elements of the inverse of matrix \( U \). We will follow these steps: ### Step 1: Define the Matrix A and the Columns of U Given the matrix \( A \) and the column vectors \( U_1, U_2, U_3 \): \[ A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \] Let \( U = \begin{pmatrix} U_1 & U_2 & U_3 \end{pmatrix} = \begin{pmatrix} A & B & C \\ D & E & F \\ G & H & I \end{pmatrix} \) ### Step 2: Set Up the Equations We will use the given equations \( AU_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \), \( AU_2 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \), and \( AU_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \) to derive the values of \( U_1, U_2, U_3 \). ### Step 3: Solve for \( U_1 \) From \( AU_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \): 1. The first equation: \( 2A + 0 + G = 1 \) → \( 2A + G = 1 \) 2. The second equation: \( A + D + 0 = 0 \) → \( A + D = 0 \) 3. The third equation: \( A + 0 + G = 0 \) → \( A + G = 0 \) From these equations, we can express \( D \) and \( G \) in terms of \( A \): - From \( A + D = 0 \), we have \( D = -A \). - From \( A + G = 0 \), we have \( G = -A \). Substituting \( G \) into the first equation: \[ 2A - A = 1 \implies A = 1 \] Thus, \( D = -1 \) and \( G = -1 \). ### Step 4: Solve for \( U_2 \) From \( AU_2 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \): 1. The first equation: \( 2B + H = 2 \) 2. The second equation: \( B + E + 0 + H = 3 \) 3. The third equation: \( B + 0 + H = 0 \) From the third equation, we have \( B + H = 0 \) → \( H = -B \). Substituting \( H \) into the first equation: \[ 2B - B = 2 \implies B = 2 \] Then, substituting \( B \) into \( H \): \[ H = -2 \] Now substituting \( B \) into the second equation: \[ 2 + E - 2 = 3 \implies E = 3 \] ### Step 5: Solve for \( U_3 \) From \( AU_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \): 1. The first equation: \( 2C + I = 3 \) 2. The second equation: \( C + F + 0 + I = 2 \) 3. The third equation: \( C + 0 + I = 1 \) From the third equation, we have \( C + I = 1 \) → \( I = 1 - C \). Substituting \( I \) into the first equation: \[ 2C + (1 - C) = 3 \implies C + 1 = 3 \implies C = 2 \] Then substituting \( C \) into \( I \): \[ I = 1 - 2 = -1 \] Now substituting \( C \) into the second equation: \[ 2 + F - 1 = 2 \implies F = 1 \] ### Step 6: Construct the Matrix U Now we have: \[ U = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 3 & 1 \\ -1 & -2 & -1 \end{pmatrix} \] ### Step 7: Find the Inverse of U To find \( U^{-1} \), we use the formula \( U^{-1} = \frac{1}{\text{det}(U)} \cdot \text{adj}(U) \). 1. Calculate the determinant \( \text{det}(U) \). 2. Find the adjugate \( \text{adj}(U) \). 3. Compute \( U^{-1} \). ### Step 8: Calculate the Sum of Elements of \( U^{-1} \) Finally, sum all the elements of \( U^{-1} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (ASSERTION /REASON)|3 Videos
  • MATRICES

    ML KHANNA|Exercise PROBLEM SET(1) (TRUE AND FALSE)|9 Videos
  • MATRICES

    ML KHANNA|Exercise EXAMPLE|4 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos
  • MAXIMA AND MINIMA

    ML KHANNA|Exercise MISCELANEOUS EXERCISE (COMPREHENSION)|3 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(2,1,0),(3,2,1)], if U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The sum of elements of U^-1 is: (A) -1 (B) 0 (C) 1 (D) 3

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of |U| is (A) 3 (B) -3 (C) 3/2 (D) 2

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_ =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of determinant [(3,2,0)] I[(3),(2),(0)] is (A) 5 (B) 5/2 (C) 4 (D) 3/2

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1[(1),(0),(0)],AU_2[(2),(3),(6)],AU_3[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=

ML KHANNA-MATRICES-PROBLEM SET(1) (MULTIPLE CHOICE QUESTIONS)
  1. If F(alpha)=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha, 0),(0,0...

    Text Solution

    |

  2. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  3. Which of the following the following is correct?

    Text Solution

    |

  4. If A be a skew symmetric matrix of odd order, then |A| is equal to

    Text Solution

    |

  5. If A be a skew symmetric matrix of even order then |A| is equal to

    Text Solution

    |

  6. If A=[(1,0),(1//2,1)] then A^(50) is

    Text Solution

    |

  7. If A=[(a,0,0),(0,a,0),(0,0,a)] then A^(n)=

    Text Solution

    |

  8. If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T, ...

    Text Solution

    |

  9. If A=[(1,2,-1),(-1,1,2),(2,-1,1)] then det [adj(adjA)]=

    Text Solution

    |

  10. The equations x+2y+3z=1, 2x+y+3z=2,5x+5y+9z=4 have

    Text Solution

    |

  11. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  12. x+y+z=6 x-y+z=2 2x+y-z=1 then x,y,z are respectively

    Text Solution

    |

  13. The value of a fro which the system of equations ax+by+z=0,x+ay+z=0,x+...

    Text Solution

    |

  14. There are two column vectors X=((x),(1)) and ((1,4),(5,2)) X is parall...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose entries a...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  19. A=[(2,0,1),(1,1,0),(1,0,1)],AU(1)=[(1),(0),(0)](3xx1)'AU(2)=[(2),(3),(...

    Text Solution

    |

  20. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |