Home
Class 12
MATHS
Ifa^(2)+b^(2)+c^(2)=1 then ab+bc+ca lies...

If`a^(2)+b^(2)+c^(2)=1` then `ab+bc+ca` lies in the interval

A

`[1,2]`

B

`[0,1/2)`

C

`[-1/2,1]`

D

`[0,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the range of the expression \( ab + bc + ca \) given the constraint \( a^2 + b^2 + c^2 = 1 \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We start with the condition: \[ a^2 + b^2 + c^2 = 1 \] 2. **Using the Cauchy-Schwarz Inequality**: By applying the Cauchy-Schwarz inequality, we can derive that: \[ (a + b + c)^2 \leq (1^2 + 1^2 + 1^2)(a^2 + b^2 + c^2) = 3(a^2 + b^2 + c^2) = 3 \] This implies: \[ a + b + c \leq \sqrt{3} \] 3. **Finding the Lower Bound**: We can also use the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Rearranging gives: \[ ab + bc + ca = \frac{(a + b + c)^2 - (a^2 + b^2 + c^2)}{2} \] Substituting \( a^2 + b^2 + c^2 = 1 \): \[ ab + bc + ca = \frac{(a + b + c)^2 - 1}{2} \] 4. **Finding the Upper Bound**: The maximum value of \( (a + b + c)^2 \) is 3 (from Cauchy-Schwarz), thus: \[ ab + bc + ca \leq \frac{3 - 1}{2} = 1 \] 5. **Finding the Lower Bound**: To find the minimum value, we can use the fact that: \[ (a - b)^2 + (b - c)^2 + (c - a)^2 \geq 0 \] Expanding this gives: \[ 2(a^2 + b^2 + c^2) - 2(ab + bc + ca) \geq 0 \] Substituting \( a^2 + b^2 + c^2 = 1 \): \[ 2 - 2(ab + bc + ca) \geq 0 \implies ab + bc + ca \leq 1 \] Rearranging gives: \[ ab + bc + ca \geq -\frac{1}{2} \] 6. **Final Conclusion**: Combining both bounds, we find: \[ -\frac{1}{2} \leq ab + bc + ca \leq 1 \] Therefore, the interval for \( ab + bc + ca \) is: \[ \boxed{[-\frac{1}{2}, 1]} \]
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|27 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are the sides ofa triangle then the expression (a^(2)+b^(2)+c^(2))/(ab+bc+ca) lies in the interval

If a^(2)+b^(2)+c^(2)=1, then the range of ab+bc+ca is

If a^(2)+b^(2)+c^(2)=154 and ab+bc + ca=-5 , find a+b+c.

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + (c+a)/(b) =?

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+ (c )/(a+b) = ?