Home
Class 12
MATHS
If x,y,z are three +ive real numbers, th...

If x,y,z are three +ive real numbers, then minimum value of `(y+z)/x+(z+x)/y+(x+y)/z` is

A

1

B

2

C

3

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(\frac{y+z}{x} + \frac{z+x}{y} + \frac{x+y}{z}\) where \(x, y, z\) are positive real numbers, we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step solution: 1. **Rewrite the expression**: \[ E = \frac{y+z}{x} + \frac{z+x}{y} + \frac{x+y}{z} \] 2. **Apply AM-GM Inequality**: We can apply the AM-GM inequality to each of the terms in the expression: \[ \frac{y+z}{x} = \frac{y}{x} + \frac{z}{x} \] By AM-GM, we know that: \[ \frac{y}{x} + \frac{z}{x} \geq 2\sqrt{\frac{yz}{x^2}} \] Similarly, we can apply AM-GM to the other two terms: \[ \frac{z+x}{y} \geq 2\sqrt{\frac{zx}{y^2}} \] \[ \frac{x+y}{z} \geq 2\sqrt{\frac{xy}{z^2}} \] 3. **Combine the inequalities**: Adding these inequalities together gives: \[ E \geq 2\left(\sqrt{\frac{yz}{x^2}} + \sqrt{\frac{zx}{y^2}} + \sqrt{\frac{xy}{z^2}}\right) \] 4. **Use AM-GM again**: Now, we can apply AM-GM to the terms \(\sqrt{\frac{yz}{x^2}}, \sqrt{\frac{zx}{y^2}}, \sqrt{\frac{xy}{z^2}}\): \[ \sqrt{\frac{yz}{x^2}} + \sqrt{\frac{zx}{y^2}} + \sqrt{\frac{xy}{z^2}} \geq 3\sqrt[3]{\sqrt{\frac{yz}{x^2}} \cdot \sqrt{\frac{zx}{y^2}} \cdot \sqrt{\frac{xy}{z^2}}} \] Simplifying this gives: \[ = 3\sqrt[3]{\frac{(xyz)^{1.5}}{(xyz)}} = 3 \] 5. **Final inequality**: Thus, we have: \[ E \geq 2 \cdot 3 = 6 \] 6. **Equality condition**: The equality in AM-GM holds when \(x = y = z\). Therefore, the minimum value of \(E\) occurs when \(x = y = z\). ### Conclusion: The minimum value of \(\frac{y+z}{x} + \frac{z+x}{y} + \frac{x+y}{z}\) is \(6\).
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|27 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos

Similar Questions

Explore conceptually related problems

If x,yand z are positive real numbers,then the minimum value of (x)/(y)+(y)/(z)+(z)/(x) is:

If x,y,z are positive real numbers and x+y+z=1, then minimum value of ((4)/(x)+(9)/(y)+(16)/(z)) is

If x,y,z are three real numbers of the same sign then the value of (x)/(y)+(y)/(z)+(z)/(x) lies

If x,y,z are positive real number, such that x+y+z=1 , if the minimum value of (1+1/x)(1+1/y)(1+1/z) is K^(2) , then |K| is ……….

If x, y, z are non-negative real numbers satisfying x+y+z=1 , then the minimum value of ((1)/(x)+1)((1)/(y)+1)((1)/(z)+1) , is

If x,y,z are any three real numbers, then tan (x-y) + tan (y-z) + tan (z-x) is equal to

If x,y,z are distinct real numbers then the value of ((1)/(x-y))^(2)+((1)/(y-z))^(2)+((1)/(z-x))^(2) is

For a non-zero positive numbers x,y and z ,the minimum value of (x+y+z)((1)/(x)+(1)/(y)+(1)/(z)) is