Home
Class 12
MATHS
The least value of 2log(100)a-log(a)(.00...

The least value of `2log_(100)a-log_(a)(.0001),agt1` is

A

2

B

3

C

4

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the expression \( 2\log_{100} a - \log_{a}(0.0001) \) for \( a > 1 \), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions We start with the expression: \[ 2\log_{100} a - \log_{a}(0.0001) \] Using the change of base formula, we can rewrite \( \log_{100} a \) as: \[ \log_{100} a = \frac{\log_{10} a}{\log_{10} 100} = \frac{\log_{10} a}{2} \] Thus, we have: \[ 2\log_{100} a = 2 \cdot \frac{\log_{10} a}{2} = \log_{10} a \] Now, we rewrite \( \log_{a}(0.0001) \): \[ \log_{a}(0.0001) = \frac{\log_{10}(0.0001)}{\log_{10} a} = \frac{-4}{\log_{10} a} \] because \( 0.0001 = 10^{-4} \). ### Step 2: Substitute back into the expression Now, substituting these back into our original expression, we get: \[ \log_{10} a - \left(-\frac{4}{\log_{10} a}\right) = \log_{10} a + \frac{4}{\log_{10} a} \] ### Step 3: Let \( x = \log_{10} a \) Let \( x = \log_{10} a \). Then, our expression simplifies to: \[ f(x) = x + \frac{4}{x} \] where \( x > 0 \) since \( a > 1 \). ### Step 4: Find the minimum value of \( f(x) \) To find the minimum value of \( f(x) \), we can use calculus. We take the derivative of \( f(x) \): \[ f'(x) = 1 - \frac{4}{x^2} \] Setting the derivative equal to zero to find critical points: \[ 1 - \frac{4}{x^2} = 0 \implies \frac{4}{x^2} = 1 \implies x^2 = 4 \implies x = 2 \quad (\text{since } x > 0) \] ### Step 5: Verify it's a minimum Now we check the second derivative: \[ f''(x) = \frac{8}{x^3} \] Since \( f''(x) > 0 \) for \( x > 0 \), \( f(x) \) has a local minimum at \( x = 2 \). ### Step 6: Calculate the minimum value Now, substituting \( x = 2 \) back into \( f(x) \): \[ f(2) = 2 + \frac{4}{2} = 2 + 2 = 4 \] ### Conclusion Thus, the least value of \( 2\log_{100} a - \log_{a}(0.0001) \) for \( a > 1 \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|27 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos

Similar Questions

Explore conceptually related problems

log_(100)a-log_(a)0.0001,a>1

The greatest value of (4log_(10)x-log_(x)(.0001))f or 0

The least value of expression 2log_(10)x-log_(x)(1//100) for xgt1 is ?

The value of log_(10)0.0001 is

log_(100)4+2log_(100)27

What is the value of log_(100)0.1