Home
Class 12
MATHS
If x(n)gt1 for all n in N, then the mini...

If `x_(n)gt1` for all `n in N`, then the minimum value of the expression
`log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n)` is

A

1

B

2

C

0

D

None

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(TRUE AND FALSE)|27 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos

Similar Questions

Explore conceptually related problems

IF x=198! then value of the expression (1)/(log_(2)x)+(1)/(log_(3)x)+...+(1)/(log_(198)x) equals

If x=prod_(n=1)^(2000)n , then the value of the expression, 1/(1/((log)_2x)+1/((log)_3x)++1/((log)_(2000)x))i s dot

The least value of expression 2 log_(10)x - log_(x) (1//100) for x gt 1 is:

log_(x)A^(n) = ______

The greatest value of the function log_(x) 1//9 - log_(3) x^(2) (x gt 1) is

The coeffiecient of x^(n) in the expansion of log_(n)(1+x) is

Find the minimum value of log_(x_(1))(x_(2)-(1)/(4))+log_(x_(2))(x_(3)-(1)/(4))+......+log_(x_(20))(x_(1)-(1)/(4)) over all x_(1),x_(2),...x_(20)in((1)/(4),1)

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))