Home
Class 12
MATHS
2/(b+c)+2/(c+a)+2/(a+b)gt9/(a+b+c)...

`2/(b+c)+2/(c+a)+2/(a+b)gt9/(a+b+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \frac{2}{b+c} + \frac{2}{c+a} + \frac{2}{a+b} > \frac{9}{a+b+c} \), we can use the concept of the Arithmetic Mean-Harmonic Mean (AM-HM) inequality. ### Step-by-step solution: 1. **Identify the terms**: We have three fractions on the left side: \[ \frac{2}{b+c}, \quad \frac{2}{c+a}, \quad \frac{2}{a+b} \] 2. **Apply the AM-HM inequality**: According to the AM-HM inequality, for any positive numbers \( x_1, x_2, x_3 \): \[ \frac{x_1 + x_2 + x_3}{3} \geq \frac{3}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}} \] Here, we can set: \[ x_1 = b+c, \quad x_2 = c+a, \quad x_3 = a+b \] 3. **Calculate the left-hand side**: \[ \frac{(b+c) + (c+a) + (a+b)}{3} = \frac{2(a+b+c)}{3} \] 4. **Calculate the right-hand side using HM**: \[ \frac{3}{\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}} \Rightarrow \text{Let } S = \frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \] 5. **Combine the results**: From the AM-HM inequality, we have: \[ \frac{2(a+b+c)}{3} \geq \frac{3}{S} \] 6. **Rearranging gives**: \[ S \geq \frac{9}{2(a+b+c)} \] 7. **Substituting back into the inequality**: We need to show: \[ \frac{2}{b+c} + \frac{2}{c+a} + \frac{2}{a+b} > \frac{9}{a+b+c} \] This can be rewritten using \( S \): \[ 2S > \frac{9}{a+b+c} \] 8. **Final step**: Since we have \( S \geq \frac{9}{2(a+b+c)} \), multiplying both sides by 2 gives: \[ 2S \geq \frac{9}{a+b+c} \] Thus, we conclude: \[ \frac{2}{b+c} + \frac{2}{c+a} + \frac{2}{a+b} > \frac{9}{a+b+c} \] This proves the original inequality.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos

Similar Questions

Explore conceptually related problems

If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) + (c+a)/(b)) ((c )/(a+b) + (b)/(a+c) + (c )/(a+b)) =?

If a,b,c gt 0, then (a )/(2a + b +c ) = (b)/(a + 2b +c)= (c )/(a +b + 2c) = ?

If a,b,c and d are any four consecutive coefficients in the expansion of (1 + x)^(n) , then prove that (i) (a) /(a+ b) + (c)/(b+c) = (2b)/(b+c) (ii) ((b)/(b+c))^(2) gt (ac)/((a + b)(c + d)), "if " x gt 0 .

Prove that if a,b,c gt 0 then a^2(b+c)+b^2(c+a)+c^2(a+b) geq 6abc

If a,b and c are the side of a triangle,then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c) is 3 (b) 9(c)6(d)1

If (b^2+c^2-a^2)/(2b c),(c^2+a^2-b^2)/(2c a),(a^2+b^2-c^2)/(2a b) are in A.P. and a+b+c=0 then prove that a(b+c-a),b(c+a-b),c(a+b-c) are in A.P.

(a^(2)-b^(2)-2bc-c^(2))/(a^(2)+b^(2)+2ab-c^(2)) is equivalent to (a-b+c)/(a+b+c)( b) (a-b-c)/(a-b+c)(c)(a-b-c)/(a+b-c)(d)(a+b+c)/(a-b+c)

Prove that 2b^(2)c^(2) +2c^(2)a^(2) +2a^(2)b^(2) -a^(4)-b^(4)-c^(4)= (a+b+c) (b+c-a) (c+a-b) (a+b-c)

ML KHANNA-INEQUALITIES-PROBLEM SET (1)(TRUE AND FALSE)
  1. If a > ba n dn is a positive integer, then prove that a^n-b^n > n(a b)...

    Text Solution

    |

  2. If agtbgt1 then a^(n)-b^(n)gtn(a-b) for every +ive integer n ge2.True ...

    Text Solution

    |

  3. 2/(b+c)+2/(c+a)+2/(a+b)gt9/(a+b+c)

    Text Solution

    |

  4. If S=a+b+c then prove that (S)/(S-a)+(S)/(S-b)+(S)/(S-c) gt (9)/(2) wh...

    Text Solution

    |

  5. 3/(b+c+d)+3/(c+d+a)+3/(d+a+b)+3/(a+b+c)gt16/(a+b+c+d)

    Text Solution

    |

  6. n(n+1)^(3)lt8(1^(3)+2^(3)+3^(3)+………+n^(3))

    Text Solution

    |

  7. If a, b, c are in H.P. and they are distinct and positive then prove t...

    Text Solution

    |

  8. Sum of the nth powers of the m^(th) power of n even numbers is gtn(n+1...

    Text Solution

    |

  9. If a,b,c are real numbers such that a^(2)+b^(2)+c^(2)=1 then ab+bc+cag...

    Text Solution

    |

  10. In any triangle the semi perimeter is greater than each of its sides.

    Text Solution

    |

  11. The sum of the cubes of the legs of a right angled triangle is less th...

    Text Solution

    |

  12. Thesum of the hypotenuse and the altitude of a right angled triangle d...

    Text Solution

    |

  13. The area of an arbitrary triangle is less than one fourth the square o...

    Text Solution

    |

  14. If x,y,z are all positive and x lt y lt z, then (x^(2))/zlt(x^(2)+y^(2...

    Text Solution

    |

  15. If 0ltalpha(1)ltalpha(2)lt……….ltalpha(n)lt(pi)/2 then tan alpha(1)lt...

    Text Solution

    |

  16. If A+B+C=pithen "tan"^(2)A/2+"tan"^(2)B/2+"tan"^(2)C/2ge1.

    Text Solution

    |

  17. Prove that 2sinx + tanx ge3x, for all x in [0, pi/2].

    Text Solution

    |

  18. (a(1)^(2)+a(2)^(2)+….a(n)^(2)) (b(1)^(2)+b(2)^(2)+…..+b(n)^(2))ge(a(1...

    Text Solution

    |

  19. A.M. of the square root of products taken two together on n+ve quantit...

    Text Solution

    |

  20. Given n^(4)lt10^(n) for a fixed positive integer nge2, then (n+1)^(4)l...

    Text Solution

    |