Home
Class 12
MATHS
log(e)4+log(4)egt2 a. True b. False...

`log_(e)4+log_(4)egt2`
a. True b. False

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_e 4 + \log_4 e > 2 \), we will follow these steps: ### Step 1: Rewrite the logarithms using properties of logarithms We start with the given expression: \[ \log_e 4 + \log_4 e \] Using the change of base formula, we can express \( \log_4 e \) in terms of natural logarithms (base \( e \)): \[ \log_4 e = \frac{\log_e e}{\log_e 4} = \frac{1}{\log_e 4} \] Thus, we can rewrite the inequality as: \[ \log_e 4 + \frac{1}{\log_e 4} > 2 \] ### Step 2: Let \( x = \log_e 4 \) Now, we substitute \( x \) for \( \log_e 4 \): \[ x + \frac{1}{x} > 2 \] ### Step 3: Multiply through by \( x \) (assuming \( x > 0 \)) Since \( \log_e 4 > 0 \) (because \( 4 > 1 \)), we can safely multiply both sides by \( x \): \[ x^2 + 1 > 2x \] ### Step 4: Rearrange the inequality Rearranging gives us: \[ x^2 - 2x + 1 > 0 \] This simplifies to: \[ (x - 1)^2 > 0 \] ### Step 5: Analyze the inequality The expression \( (x - 1)^2 \) is always non-negative and is equal to zero only when \( x = 1 \). Therefore, \( (x - 1)^2 > 0 \) for all \( x \) except \( x = 1 \). ### Step 6: Determine when \( x = 1 \) We need to check if \( x = 1 \) corresponds to \( \log_e 4 \): \[ \log_e 4 = 1 \implies 4 = e^1 \implies e \approx 2.718 < 4 \] Thus, \( \log_e 4 \neq 1 \). ### Conclusion Since \( (x - 1)^2 > 0 \) for all \( x \) except \( x = 1 \), and since \( x = \log_e 4 \) is not equal to 1, the inequality holds true for all values of \( x \). Therefore, the original inequality \( \log_e 4 + \log_4 e > 2 \) is **True**. ### Final Answer a. True ---
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos

Similar Questions

Explore conceptually related problems

log_(x)ab= (log_(x)a) xx (log_(x)b) . State true of False.

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

If log_(4)(log_(2)x) + log_(2) (log_(4) x) = 2 , then find log_(x)4 .

If x = log_(c) b + log_(b) c, y = log_(a) c + log_(c) a, z = log_(b) a + log_(a) b, then x^(2) + y^(2) + z^(2) - 4 =

The area bounded by the curve y=2^(x), the x- axis and the left of y-axis is (A) log _(e)2(B)log_(e)4 (C) log_(4)e(D)log_(2)e

If log_(e)((a+b)/(2))=(1)/(2)(log_(e)a+log_(e)b), then find the relation between a and b.

Let a=(log_(27)8)/(log_(3)2),b=((1)/(2^(log_(2)5)))((1)/(5^(log_(5)(01)))) and c=(log_(4)27)/(log_(4)3) then the value of (a+b+c), is and c=(log_(4)27)/(log_(4)3)

ML KHANNA-INEQUALITIES-PROBLEM SET (1)(TRUE AND FALSE)
  1. 3/(b+c+d)+3/(c+d+a)+3/(d+a+b)+3/(a+b+c)gt16/(a+b+c+d)

    Text Solution

    |

  2. n(n+1)^(3)lt8(1^(3)+2^(3)+3^(3)+………+n^(3))

    Text Solution

    |

  3. If a, b, c are in H.P. and they are distinct and positive then prove t...

    Text Solution

    |

  4. Sum of the nth powers of the m^(th) power of n even numbers is gtn(n+1...

    Text Solution

    |

  5. If a,b,c are real numbers such that a^(2)+b^(2)+c^(2)=1 then ab+bc+cag...

    Text Solution

    |

  6. In any triangle the semi perimeter is greater than each of its sides.

    Text Solution

    |

  7. The sum of the cubes of the legs of a right angled triangle is less th...

    Text Solution

    |

  8. Thesum of the hypotenuse and the altitude of a right angled triangle d...

    Text Solution

    |

  9. The area of an arbitrary triangle is less than one fourth the square o...

    Text Solution

    |

  10. If x,y,z are all positive and x lt y lt z, then (x^(2))/zlt(x^(2)+y^(2...

    Text Solution

    |

  11. If 0ltalpha(1)ltalpha(2)lt……….ltalpha(n)lt(pi)/2 then tan alpha(1)lt...

    Text Solution

    |

  12. If A+B+C=pithen "tan"^(2)A/2+"tan"^(2)B/2+"tan"^(2)C/2ge1.

    Text Solution

    |

  13. Prove that 2sinx + tanx ge3x, for all x in [0, pi/2].

    Text Solution

    |

  14. (a(1)^(2)+a(2)^(2)+….a(n)^(2)) (b(1)^(2)+b(2)^(2)+…..+b(n)^(2))ge(a(1...

    Text Solution

    |

  15. A.M. of the square root of products taken two together on n+ve quantit...

    Text Solution

    |

  16. Given n^(4)lt10^(n) for a fixed positive integer nge2, then (n+1)^(4)l...

    Text Solution

    |

  17. For real a,b and x -sqrt((a^(2)+b^(2))lea sin x +bcos x le sqrt((a^(2...

    Text Solution

    |

  18. log(e)4+log(4)egt2 a. True b. False

    Text Solution

    |

  19. 4 ^(sin ^(2)x ) + 4 ^(cos ^(2)x ) ge4 for all real x.

    Text Solution

    |

  20. If y=sinnx+cosnx (x,n real0 then -sqrt(2)leylesqrt(2). a. True b. Fal...

    Text Solution

    |