Home
Class 12
MATHS
The vertices of a triangle ABC are (lamd...

The vertices of a triangle ABC are `(lamda, 2-2lamda), (-lamda+1,2lamda)` an `(_4-lamda,6-2lamda)`. If its area be 70 units then number of integral values of `lamda` is

A

1

B

2

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of integral values of \(\lambda\) for the given triangle vertices, we will follow these steps: ### Step 1: Write down the vertices of the triangle The vertices of triangle \(ABC\) are given as: - \(A(\lambda, 2 - 2\lambda)\) - \(B(-\lambda + 1, 2\lambda)\) - \(C(-4 - \lambda, 6 - 2\lambda)\) ### Step 2: Use the formula for the area of a triangle The area \(A\) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) is given by: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the coordinates of points \(A\), \(B\), and \(C\): \[ A = \frac{1}{2} \left| \lambda(2\lambda - (6 - 2\lambda)) + (-\lambda + 1)((6 - 2\lambda) - (2 - 2\lambda)) + (-4 - \lambda)((2 - 2\lambda) - 2\lambda) \right| \] ### Step 3: Simplify the expression Calculating each term: 1. \(A = \frac{1}{2} \left| \lambda(2\lambda - 6 + 2\lambda) \right| = \frac{1}{2} \left| \lambda(4\lambda - 6) \right|\) 2. \(B = -\lambda + 1 \Rightarrow (6 - 2\lambda - 2 + 2\lambda) = 4\) 3. \(C = -4 - \lambda \Rightarrow (2 - 2\lambda - 2\lambda) = -2\lambda\) Putting it all together: \[ A = \frac{1}{2} \left| \lambda(4\lambda - 6) + (-\lambda + 1)(4) + (-4 - \lambda)(-2\lambda) \right| \] ### Step 4: Set the area equal to 70 We know the area is given as 70 units: \[ \frac{1}{2} \left| \lambda(4\lambda - 6) + 4(-\lambda + 1) + 2\lambda(4 + \lambda) \right| = 70 \] Multiplying both sides by 2: \[ \left| \lambda(4\lambda - 6) + 4(-\lambda + 1) + 2\lambda(4 + \lambda) \right| = 140 \] ### Step 5: Solve the equation This leads to two cases: 1. \( \lambda(4\lambda - 6) + 4(-\lambda + 1) + 2\lambda(4 + \lambda) = 140 \) 2. \( \lambda(4\lambda - 6) + 4(-\lambda + 1) + 2\lambda(4 + \lambda) = -140 \) ### Step 6: Simplify and solve for \(\lambda\) For the first case: \[ 2\lambda^2 + \lambda - 36 = 0 \] Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 288}}{4} = \frac{-1 \pm 17}{4} \] This gives: \[ \lambda = 4 \quad \text{or} \quad \lambda = -\frac{9}{2} \] For the second case: \[ 2\lambda^2 + \lambda + 36 = 0 \] The discriminant is negative, hence no real solutions. ### Step 7: Count integral values The integral values of \(\lambda\) from the first case are: - \(\lambda = 4\) (integral) - \(\lambda = -4\) (integral) Thus, the number of integral values of \(\lambda\) is **1**. ### Final Answer The number of integral values of \(\lambda\) is **1**. ---
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(TRUE AND FALSE)|7 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(fill in the blanks)|2 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(1)(FILL IN THE BLANK)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

The vertices of a DeltaABC are (lamda,2-,2lamda),(-lamda+1,2lamda) and (-4-lamda,6-2lamda) . If its area be 70 units, then number of integral values of lamda is

If (1,5,35 ),( 7,5,5),( 1, lamda ,7) and ( 2 lamda ,1,2) are coplanar then the sum of all possible values of lamda is

The determinant Delta =|(lamda a , lamda^(2)+a^(2),1),(lamda b,lamda^(2)+b^(2),1),(lamdac,lamda^(2)+c^(2),1)| equals

The sum of all intergral values of lamda for which (lamda^(2) + lamda -2) x ^(2) + (lamda +2) x lt 1 AA x in R, is:

ML KHANNA-RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE-PROBLEM SET(2)(MULTIPLE CHOICE QUESTIONS)
  1. The number of triangle formed by the curves x^(3)-x^(2)-x-2=0 and 4x^(...

    Text Solution

    |

  2. The area of a triangle is 5 units. Two of its certices are (2,1)and (3...

    Text Solution

    |

  3. The vertices of a triangle ABC are (lamda, 2-2lamda), (-lamda+1,2lamda...

    Text Solution

    |

  4. If the co-ordinates of points A,B,C,D are (6,3),(-3,5),(4,-2) and (x,3...

    Text Solution

    |

  5. Let A(1,k),B(1,1) and C(2,1) be the vertices of a right angled triangl...

    Text Solution

    |

  6. If the points (2k,k),(k,2k) and (k,k) with kgt0 enclose a triangle of ...

    Text Solution

    |

  7. The area of the triangle with vertices at (-4,1),(1,2),(4,-3) is

    Text Solution

    |

  8. The area of the triangle with vertices at the points (a,b+c),(b,c+a),(...

    Text Solution

    |

  9. If r is the geometric mean of p and q, then the line px+qy+r=0

    Text Solution

    |

  10. A line passsing through the point (2,2) cuts the axes of co-ordinates ...

    Text Solution

    |

  11. The centroid of a triangle is (1,4) and the co-ordinate of its two ver...

    Text Solution

    |

  12. Let A(2,-3)a n dB(-2,1) be vertices of a triangle A B Cdot If the cent...

    Text Solution

    |

  13. Line L is perpendicular to the lines 5x-y=1. The area of triangle form...

    Text Solution

    |

  14. Area of the triangle with vertces (a,b),(x(1),y(1)) and (x(2),y(2)) wh...

    Text Solution

    |

  15. The points (x(r),y(r)),r=1,2,3 are the vertices fo an quilateral trian...

    Text Solution

    |

  16. (x(1)-x(2))^(2)+(y(1)-y(2))^(2)=a^(2) (x(2)-x(3))^(2)+(y(2)-y(3))^(2)=...

    Text Solution

    |

  17. If P be a point equidistant from points A (3,4) and B (5,-2) and area ...

    Text Solution

    |

  18. P(3, 1), Q(6, 5) and R(x, y) are three points such that the angle PRQ ...

    Text Solution

    |

  19. If P and Q are two points on the line 3x + 4y = - 15, such that OP = O...

    Text Solution

    |

  20. P(2,1) , Q (4,-1) , R (3,2) are the vertices of a triangle and if thro...

    Text Solution

    |