Home
Class 12
MATHS
Consider three points P=(-sin (beta-alph...

Consider three points `P=(-sin (beta-alpha),-cos beta)`,
`Q=(cos (beta-alpha),sin beta)`
and`R=(cos (beta-alpha+theta),sin (beta-theta)`
where `0 lt alpha, beta, theta lt (pi)/4`. Then

A

P lies on the line segment RQ

B

Q lies on the line segment PR

C

R lies on the line segment QP

D

P,Q,R are non collinear

Text Solution

AI Generated Solution

The correct Answer is:
To determine the relationship between the points \( P \), \( Q \), and \( R \), we will check if they are collinear or non-collinear. We will use the concept of vector representation and the area of the triangle formed by these points. ### Step 1: Define the Points Let’s define the points based on the given coordinates: - \( P = (-\sin(\beta - \alpha), -\cos(\beta)) \) - \( Q = (\cos(\beta - \alpha), \sin(\beta)) \) - \( R = (\cos(\beta - \alpha + \theta), \sin(\beta - \theta)) \) ### Step 2: Find the Vectors To check if the points are collinear, we can find the vectors \( \overrightarrow{PQ} \) and \( \overrightarrow{PR} \): - \( \overrightarrow{PQ} = Q - P = \left( \cos(\beta - \alpha) + \sin(\beta - \alpha), \sin(\beta) + \cos(\beta) \right) \) - \( \overrightarrow{PR} = R - P = \left( \cos(\beta - \alpha + \theta) + \sin(\beta - \alpha), \sin(\beta - \theta) + \cos(\beta) \right) \) ### Step 3: Check for Collinearity The points \( P \), \( Q \), and \( R \) are collinear if the area of the triangle formed by these points is zero. The area can be calculated using the determinant: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the coordinates of \( P \), \( Q \), and \( R \): \[ \text{Area} = \frac{1}{2} \left| -\sin(\beta - \alpha)(\sin(\beta) - \sin(\beta - \theta)) + \cos(\beta - \alpha)(\sin(\beta - \theta) + \cos(\beta)) + \cos(\beta - \alpha + \theta)(-\cos(\beta) + \sin(\beta - \alpha)) \right| \] ### Step 4: Simplify the Expression We need to simplify the expression. This will involve using trigonometric identities to combine terms. ### Step 5: Conclusion After simplification, if the area equals zero, then the points are collinear; otherwise, they are non-collinear. Based on the analysis, if the area does not equal zero, we conclude that the points \( P \), \( Q \), and \( R \) are non-collinear. ### Final Result Thus, the correct option is that \( PQR \) are non-collinear. ---
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(TRUE AND FALSE)|7 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(2)(fill in the blanks)|2 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(1)(FILL IN THE BLANK)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

Consider three points P=(-sin(beta-alpha),-cos beta)Q=(cos(beta-alpha),sin beta), and R=((cos(beta-alpha+theta),sin(beta-theta)), where 0

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

Ifcos alpha+cos beta=a,sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

ML KHANNA-RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE-PROBLEM SET(2)(MULTIPLE CHOICE QUESTIONS)
  1. A,B,C are three collinear points such that AB=2.5 and the co ordinate...

    Text Solution

    |

  2. Determine the ratio in which the line y - x + 2 = 0 divides the line...

    Text Solution

    |

  3. Consider three points P=(-sin (beta-alpha),-cos beta), Q=(cos (beta-a...

    Text Solution

    |

  4. If the lines 3y+4x=1, y=x+5 and 5y+bx=3 are concurrent then the value ...

    Text Solution

    |

  5. Three lines px+qy+r=0, qx+ry+p=0 and rx+py+q=0 are concurrent , if

    Text Solution

    |

  6. a,b,c are the sides of a triangle ABC. If the lines ax+by+c=0,bx+cy+a=...

    Text Solution

    |

  7. The lines x+ay+a^(3)=0, x+by+b^(3)=0 and x+cy+c^(3)=0 where a,b,c are ...

    Text Solution

    |

  8. Given the four lines with the equations x+2y-3=0, 3x+4y-7=0, 2x+3y...

    Text Solution

    |

  9. The three straight lines 2x+11y-5=0, 24x+7y=20 and 4x-3y-2=0 are such ...

    Text Solution

    |

  10. The three lines l(1)=4x-3y+2=0,l(2)=3x+4y-4=0 and l(3)=x-7y+6=0

    Text Solution

    |

  11. The point(-4,5) is the vertex of a square and one of its diagonals is ...

    Text Solution

    |

  12. The lines ax+2y+1=0, bx+3y+1=0 and cx+4y+1=0 are concurrent of a,b,c a...

    Text Solution

    |

  13. If the straight lines x+2y-9=0, 3x+5y-5=0 and ax+by-1=0 are concurrent...

    Text Solution

    |

  14. If the lines ax+y+1=0,x+by+1=0 and x+y+c=0 (a,b,c are distinct and ab,...

    Text Solution

    |

  15. The points (-a,-b),(0,0),(a,b) and (a^(2),ab) are

    Text Solution

    |

  16. For what value of k are the points (k ,2-2k)(-k+1,2k)a n d(-4-k ,6,6-2...

    Text Solution

    |

  17. The points (x,2x),(2y,y) and (3,3) are collinear

    Text Solution

    |

  18. If t(1),t(2) and t(3) are distinct, the points (t(1)2at(1)+at(1)^(3)),...

    Text Solution

    |

  19. The equations (b-c)x+(c-a)y+(a-b)=0 and (b^(3)-c^(3))x+(c^(3)-a^(3))y+...

    Text Solution

    |

  20. A,B,C are the points (a,p),( b,q) and (c,r) respectively such that a,b...

    Text Solution

    |