Home
Class 12
MATHS
Area of the parallelogram whose sides ar...

Area of the parallelogram whose sides are `x cos alpha+y sin alpha=p,
x cos alpha+y sin alpha=q,
x cos beta+ysin beta=r,
x cos beta+ysin beta=s` is ………..

Text Solution

Verified by Experts

The correct Answer is:
`+-(p-q)(r-s)cosec(alpha-beta)`
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(4)(MULTIPLE CHOICE QUESTIONS)|47 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(4)(TRUE AND FALSE)|4 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(3)(TRUE AND FALSE)|8 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

Prove that the area of the parallelogram formed by the lines x cos alpha+y sin alpha=p,x cos alpha+y sin alpha=q,x cos beta+y sin beta=r and x cos beta+y sin beta=sis+-(p-q)(r-s)csc(alpha-beta)

If x cos alpha + y sin alpha = x cos beta + y sin beta = 2a then cos alpha cos beta =

If x cos alpha + y sin alpha = x cos beta + y sin beta = a, 0

If x=cos alpha+i sin alpha, y=cos beta+i sin beta then " (y)/(x)-(x)/(y)=

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

The angle between lines x cos alpha+y sin alpha=p_(1), and x cos beta+y sin beta=p_(2), where alpha>beta is

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

sin alpha + sin beta = a, cos alpha + cos beta = b rArr sin (alpha + beta)