Home
Class 12
MATHS
The vertices of a triangle are A(p,p tan...

The vertices of a triangle are `A(p,p tan alphat), B(q,qtan beta),C(r,ttan gamma)`. If the circumcentre O of triangle ABC is at the origin and `H(barx,bary)` be its orthocentre then prove that
`(barx)/(bary)=(cos alpha+cos beta+cos gamma)/(sin alpha+sin beta+sin gamma)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{\bar{x}}{\bar{y}} = \frac{\cos \alpha + \cos \beta + \cos \gamma}{\sin \alpha + \sin \beta + \sin \gamma} \] given the vertices of triangle \( A(p, p \tan \alpha) \), \( B(q, q \tan \beta) \), and \( C(r, r \tan \gamma) \) with circumcenter \( O \) at the origin, we will follow these steps: ### Step 1: Determine the coordinates of the vertices The coordinates of the vertices are given as: - \( A(p, p \tan \alpha) \) - \( B(q, q \tan \beta) \) - \( C(r, r \tan \gamma) \) ### Step 2: Use the circumcenter condition Since the circumcenter \( O \) is at the origin, the distances from \( O \) to each vertex must be equal to the circumradius \( R \). Therefore, we have: \[ OA = OB = OC = R \] Calculating these distances: - \( OA = \sqrt{p^2 + (p \tan \alpha)^2} = \sqrt{p^2(1 + \tan^2 \alpha)} = p \sec \alpha \) - \( OB = \sqrt{q^2 + (q \tan \beta)^2} = q \sec \beta \) - \( OC = \sqrt{r^2 + (r \tan \gamma)^2} = r \sec \gamma \) Setting these equal to \( R \): \[ p \sec \alpha = R, \quad q \sec \beta = R, \quad r \sec \gamma = R \] From these, we can express \( p, q, r \) in terms of \( R \): \[ p = R \cos \alpha, \quad q = R \cos \beta, \quad r = R \cos \gamma \] ### Step 3: Substitute the values of \( p, q, r \) Now substituting these values back into the coordinates of the vertices: - \( A(R \cos \alpha, R \sin \alpha) \) - \( B(R \cos \beta, R \sin \beta) \) - \( C(R \cos \gamma, R \sin \gamma) \) ### Step 4: Find the centroid \( G \) The coordinates of the centroid \( G \) of triangle \( ABC \) are given by: \[ G\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \] Substituting the coordinates: \[ G\left( \frac{R \cos \alpha + R \cos \beta + R \cos \gamma}{3}, \frac{R \sin \alpha + R \sin \beta + R \sin \gamma}{3} \right) \] ### Step 5: Find the orthocenter \( H \) The orthocenter \( H \) can be expressed in terms of the centroid \( G \) and the circumcenter \( O \) using the relation: \[ \bar{x} = 3G_x - 0, \quad \bar{y} = 3G_y - 0 \] Thus, \[ \bar{x} = R \left( \cos \alpha + \cos \beta + \cos \gamma \right), \quad \bar{y} = R \left( \sin \alpha + \sin \beta + \sin \gamma \right) \] ### Step 6: Compute \( \frac{\bar{x}}{\bar{y}} \) Now, we can find the ratio: \[ \frac{\bar{x}}{\bar{y}} = \frac{R (\cos \alpha + \cos \beta + \cos \gamma)}{R (\sin \alpha + \sin \beta + \sin \gamma)} = \frac{\cos \alpha + \cos \beta + \cos \gamma}{\sin \alpha + \sin \beta + \sin \gamma} \] ### Conclusion Thus, we have proved that: \[ \frac{\bar{x}}{\bar{y}} = \frac{\cos \alpha + \cos \beta + \cos \gamma}{\sin \alpha + \sin \beta + \sin \gamma} \]
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(4)(TRUE AND FALSE)|4 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(4)(FILL IN THE BLANKS)|5 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(3)(FILL IN THE BLANKS)|7 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If cos alpha+cos beta+cos gamma=0 and also sin alpha+sin beta+sin gamma=0 then prove that

if cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then prove that cos2 alpha+cos2 beta+cos2 gamma=sin2 alpha+sin2 beta+sin2 gamma=0

The circumcentre of a triangle having vertices A(a,a tan alpha),B(b,b tan beta),C(c,c tan gamma) is at origin,where alpha+beta+gamma=pi. Then the orthocentre lies on

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-(3)/(2), prove that cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

ML KHANNA-RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE-PROBLEM SET(4)(MULTIPLE CHOICE QUESTIONS)
  1. The equations of the lines through (-1,-1) and making angle 45a with t...

    Text Solution

    |

  2. A ray of light coming from the point (1,2) is reflected at a pont A on...

    Text Solution

    |

  3. Let PQR be a right angled isosceles triangle, right angled at P(2,1). ...

    Text Solution

    |

  4. The equation of the bisector of the acute angle between the lines 3...

    Text Solution

    |

  5. Let P=(-1,0),Q(0,0) and R=(3,3sqrt(3)) be three points. Then the equat...

    Text Solution

    |

  6. Area of Delta formed by line x+y=3 and / bisectors of pair of straight...

    Text Solution

    |

  7. The equation of the line whilch bisects the obtuse angle between the l...

    Text Solution

    |

  8. The vertices of a triangle ABC are (1,1),(4,-2) and (5,5) respectively...

    Text Solution

    |

  9. The vertices of a triangle are A(-1,-7), B(5,1) and C(1,4). The equati...

    Text Solution

    |

  10. The equation(s) of the bisectors(s) of that angles between the lines x...

    Text Solution

    |

  11. The bisector of the acute angle formed between the lines 4x-3y+7=0 and...

    Text Solution

    |

  12. The lines L(1) : y - x = 0 and L(2) : 2x + y = 0 intersect the line ...

    Text Solution

    |

  13. OrthocentreH: It is the point of intersection of altitude of a triangl...

    Text Solution

    |

  14. The line lx+my+n=0 bisects the angle between a pair of straight lines ...

    Text Solution

    |

  15. The vertices of a triangle are A(p,p tan alphat), B(q,qtan beta),C(r,t...

    Text Solution

    |

  16. The vertices of a triangle are [at(1)t(2),a(t(1)+t(2))],[at(2)t(3),a(...

    Text Solution

    |

  17. Prove that the orthocentre of the triangle formed by the three lines ...

    Text Solution

    |

  18. The sides of a triangle are l(R)=xcos alpha(r)+ysin alpha(r)-p(r)=0,...

    Text Solution

    |

  19. Let P=(-1,0),Q=(0,0) and R=(3,3sqrt(3)) be three points. The equation ...

    Text Solution

    |

  20. If one of the lines of my^(2)+(1-m^(2))xy-mx^(2)=0 is a bisector of th...

    Text Solution

    |