Home
Class 12
MATHS
If x^(2)+y^(2)+lambda x +(1-lambda)y+5=0...

If `x^(2)+y^(2)+lambda x +(1-lambda)y+5=0` represents a circle whose radius cannot exceed 5, then the number of integral values of `lambda` is

A

14

B

16

C

18

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation of the circle and determine the integral values of `lambda` such that the radius does not exceed 5. ### Step-by-Step Solution: 1. **Identify the General Form of the Circle Equation**: The given equation is: \[ x^2 + y^2 + \lambda x + (1 - \lambda)y + 5 = 0 \] The general form of a circle is: \[ x^2 + y^2 + 2gx + 2fy + c = 0 \] By comparing, we can identify: - \( g = \frac{\lambda}{2} \) - \( f = \frac{1 - \lambda}{2} \) - \( c = 5 \) 2. **Calculate the Radius of the Circle**: The formula for the radius \( R \) of the circle is given by: \[ R = \sqrt{g^2 + f^2 - c} \] Substituting the values of \( g \), \( f \), and \( c \): \[ R = \sqrt{\left(\frac{\lambda}{2}\right)^2 + \left(\frac{1 - \lambda}{2}\right)^2 - 5} \] 3. **Simplify the Expression for Radius**: Expanding the terms: \[ R = \sqrt{\frac{\lambda^2}{4} + \frac{(1 - \lambda)^2}{4} - 5} \] \[ = \sqrt{\frac{\lambda^2 + (1 - 2\lambda + \lambda^2)}{4} - 5} \] \[ = \sqrt{\frac{2\lambda^2 - 2\lambda + 1}{4} - 5} \] \[ = \sqrt{\frac{2\lambda^2 - 2\lambda + 1 - 20}{4}} \] \[ = \sqrt{\frac{2\lambda^2 - 2\lambda - 19}{4}} \] 4. **Set the Condition for Radius**: We know that the radius cannot exceed 5: \[ R \leq 5 \] Squaring both sides: \[ \frac{2\lambda^2 - 2\lambda - 19}{4} \leq 25 \] Multiplying through by 4: \[ 2\lambda^2 - 2\lambda - 19 \leq 100 \] Rearranging gives: \[ 2\lambda^2 - 2\lambda - 119 \leq 0 \] 5. **Solve the Quadratic Inequality**: First, we solve the equation: \[ 2\lambda^2 - 2\lambda - 119 = 0 \] Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 2 \cdot (-119)}}{2 \cdot 2} \] \[ = \frac{2 \pm \sqrt{4 + 952}}{4} = \frac{2 \pm \sqrt{956}}{4} = \frac{2 \pm 2\sqrt{239}}{4} = \frac{1 \pm \sqrt{239}}{2} \] 6. **Approximate the Roots**: Calculating \( \sqrt{239} \) gives approximately \( 15.46 \): \[ \lambda_1 = \frac{1 - 15.46}{2} \approx -7.23 \quad \text{and} \quad \lambda_2 = \frac{1 + 15.46}{2} \approx 8.23 \] 7. **Determine the Integral Values**: The inequality \( 2\lambda^2 - 2\lambda - 119 \leq 0 \) holds between the roots: \[ -7.23 \leq \lambda \leq 8.23 \] The integral values of \( \lambda \) in this range are: \[ -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 \] Counting these gives a total of 16 integral values. ### Final Answer: The number of integral values of \( \lambda \) is **16**.
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |3 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS) |10 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

2x^(2)+2y^(2)+4 lambda x+lambda=0 represents a circle for

2x^(2)+2y^(2)+2 lambda x+lambda^(2)=0 represents a circle for

If 2(x^(2)+y^(2))+4 lambda x + lambda^(2)=0 represents a circle of meaningful radius, then the range of real values of lambda , is

The number of integral values of lambda for which the equation x^(2)+y^(2)+lambda x+(1-lambda)y+5=0 is the equation fo a circle whose radius cannot exceed 5, is 14 (b) 18 (c) 16 (d) none of these

Number of integral values of lambda for which x^(2)+y^(2)+7x+(1-lambda)y+5=0 represents the equation of a circle whose radius cannot exceed 5 is

If the equation 3x^(2)+3y^(2)+6 lambda x+2 lambda=0 represents a circle,then the value of lambda. lies in

If the equation x^(2)+y^(2)+6x-2y+(lambda^(2)+3lambda+12)=0 represent a circle. Then