Home
Class 12
MATHS
If the line 4x + 3y +lambda=0 touches th...

If the line `4x + 3y +lambda=0` touches the circle `2x^(2)+2y^(2)-5x=0`, then `lambda=`………..

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the line \( 4x + 3y + \lambda = 0 \) touches the circle given by the equation \( 2x^2 + 2y^2 - 5x = 0 \), we can follow these steps: ### Step 1: Rewrite the equation of the circle The given equation of the circle is: \[ 2x^2 + 2y^2 - 5x = 0 \] Dividing the entire equation by 2, we get: \[ x^2 + y^2 - \frac{5}{2}x = 0 \] ### Step 2: Complete the square for the circle equation To rewrite the equation in standard form, we complete the square for the \( x \) terms: \[ x^2 - \frac{5}{2}x + y^2 = 0 \] Completing the square: \[ \left( x - \frac{5}{4} \right)^2 - \left( \frac{5}{4} \right)^2 + y^2 = 0 \] This simplifies to: \[ \left( x - \frac{5}{4} \right)^2 + y^2 = \left( \frac{5}{4} \right)^2 \] Thus, the center of the circle is \( \left( \frac{5}{4}, 0 \right) \) and the radius \( r \) is \( \frac{5}{4} \). ### Step 3: Use the formula for the distance from a point to a line The distance \( d \) from the center of the circle \( C\left( \frac{5}{4}, 0 \right) \) to the line \( 4x + 3y + \lambda = 0 \) must equal the radius for the line to be tangent to the circle. The formula for the distance from a point \( (x_0, y_0) \) to the line \( Ax + By + C = 0 \) is given by: \[ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \] Here, \( A = 4 \), \( B = 3 \), \( C = \lambda \), and \( (x_0, y_0) = \left( \frac{5}{4}, 0 \right) \). ### Step 4: Substitute values into the distance formula Substituting the values into the distance formula: \[ d = \frac{|4 \cdot \frac{5}{4} + 3 \cdot 0 + \lambda|}{\sqrt{4^2 + 3^2}} = \frac{|5 + \lambda|}{\sqrt{16 + 9}} = \frac{|5 + \lambda|}{5} \] ### Step 5: Set the distance equal to the radius Setting the distance equal to the radius: \[ \frac{|5 + \lambda|}{5} = \frac{5}{4} \] ### Step 6: Solve for \( \lambda \) Cross-multiplying gives: \[ |5 + \lambda| = \frac{5 \cdot 5}{4} = \frac{25}{4} \] This leads to two cases: 1. \( 5 + \lambda = \frac{25}{4} \) 2. \( 5 + \lambda = -\frac{25}{4} \) #### Case 1: \[ \lambda = \frac{25}{4} - 5 = \frac{25}{4} - \frac{20}{4} = \frac{5}{4} \] #### Case 2: \[ \lambda = -\frac{25}{4} - 5 = -\frac{25}{4} - \frac{20}{4} = -\frac{45}{4} \] ### Conclusion Since we are looking for the value of \( \lambda \) that allows the line to touch the circle, we take the positive value: \[ \lambda = \frac{5}{4} \] ### Final Answer \[ \lambda = \frac{5}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |29 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |4 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

The line 4y-3x+lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 then lambda=

If line 4x + 3y + k = 0 " touches circle " 2x^(2) + 2y^(2) = 5x , then k =

If the line 3x-4y-lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 at (a,b) then which of the following is not the possible value of lambda+a+b?

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then lambda =

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then the value of lambda is

The line lambda x+mu y=1 is a normal to the circle 2x^(2)+2y^(2)-5x+6y-1=0 if

A line parallel to the line x-3y=2 touches the circle x^(2)+y^(2)-4x+2y-5=0 at the point

Find the value of lambda so that the line 3x-4y= lambda may touch the circle x^2+y^2-4x-8y-5=0