Home
Class 12
MATHS
Two circles x^(2)+y^(2)+2g(1)x+2f(1)y+c(...

Two circles `x^(2)+y^(2)+2g_(1)x+2f_(1)y+c_(1)=0` and `x^(2)+y^(2)+2g_(2)x+2f_(2)y+c_(2)=0` intersect at an angle of `120^(@)` then
`(2g_(1)g_(2)+2f_(1)f_(2)-c_(1)-c_(2))^(2)=(g_(1)^(2)+f_(1)^(2)-c_(1)) (g_(2)^(2)+f_(2)^(2)-c_(2))`.
is this statement true or false?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement is true or false, we will follow the steps outlined in the video transcript to derive the condition for two circles intersecting at an angle of \(120^\circ\). ### Step-by-Step Solution 1. **Identify the Circles**: The equations of the circles are given as: \[ x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0 \quad \text{(Circle 1)} \] \[ x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0 \quad \text{(Circle 2)} \] 2. **Find the Centers and Radii**: - The center of Circle 1, \(C_1\), is \((-g_1, -f_1)\) and its radius \(r_1\) is given by: \[ r_1 = \sqrt{g_1^2 + f_1^2 - c_1} \] - The center of Circle 2, \(C_2\), is \((-g_2, -f_2)\) and its radius \(r_2\) is given by: \[ r_2 = \sqrt{g_2^2 + f_2^2 - c_2} \] 3. **Calculate the Distance Between Centers**: The distance \(d\) between the centers \(C_1\) and \(C_2\) is: \[ d = \sqrt{(g_2 - g_1)^2 + (f_2 - f_1)^2} \] 4. **Use the Angle of Intersection**: The angle \(\theta\) between the two circles is given as \(120^\circ\). The cosine of the angle can be expressed as: \[ \cos(120^\circ) = -\frac{1}{2} \] 5. **Apply the Angle Intersection Formula**: The formula for the angle of intersection of two circles is: \[ \cos \theta = \frac{r_1^2 + r_2^2 - d^2}{2r_1r_2} \] Substituting the values we have: \[ -\frac{1}{2} = \frac{(g_1^2 + f_1^2 - c_1) + (g_2^2 + f_2^2 - c_2) - d^2}{2 \sqrt{g_1^2 + f_1^2 - c_1} \sqrt{g_2^2 + f_2^2 - c_2}} \] 6. **Substituting for \(d^2\)**: Substitute \(d^2\) into the equation: \[ d^2 = (g_2 - g_1)^2 + (f_2 - f_1)^2 \] 7. **Cross-Multiply and Simplify**: Rearranging gives: \[ -1 = \frac{(g_1^2 + f_1^2 - c_1) + (g_2^2 + f_2^2 - c_2) - d^2}{\sqrt{g_1^2 + f_1^2 - c_1} \sqrt{g_2^2 + f_2^2 - c_2}} \] Cross-multiplying leads to: \[ (g_1^2 + f_1^2 - c_1)(g_2^2 + f_2^2 - c_2) = (2g_1g_2 + 2f_1f_2 - c_1 - c_2)^2 \] 8. **Final Result**: Thus, we derive the condition: \[ (2g_1g_2 + 2f_1f_2 - c_1 - c_2)^2 = (g_1^2 + f_1^2 - c_1)(g_2^2 + f_2^2 - c_2) \] This confirms that the statement is **true**.
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (7) (FILL IN THE BLANKS) |2 Videos
  • THE CIRCLE

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES) |10 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (7) (MULTIPLE CHOICE QUESTIONS) |23 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

If circles x^(2) + y^(2) + 2g_(1)x + 2f_(1)y = 0 and x^(2) + y^(2) + 2g_(2)x + 2f_(2)y = 0 touch each other, then

The circles ax^(2)+ay^(2)+2g_(1)x+2f_(1)y+c_(1)=0" and "bx^(2)+by^(2)+2g_(2)x+2f_(2)y+c_(2)=0 (ane0and bne0) cut orthogonally, if

If the two circles,x^(2)+y^(2)+2g_(1)x+2f_(1)y=0delta x^(2)+y^(2)+2g_(2)x+2f_(2)y=0 touch each other then (1)f_(1)g_(1)=f_(2)g_(2)(2)(f_(1))/(g_(1))=(f_(2))/(g_(2))(3)f_(1)f_(2)=g_(1)g_(2)(4) none of these

The circles ax^2+ay^2+2g_1 x +2f_1 y+c_1 = 0 and bx_2+by^2+2g_2x+2f_2y+c_2=0 a ne 0 and b ne 0 0cut orthogonally if

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =

If circles x^(2) + y^(2) + 2gx + 2fy + e = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - e =