Home
Class 12
MATHS
The circles (x+a)^(2)+(y+b)^(2)=a^(2) an...

The circles `(x+a)^(2)+(y+b)^(2)=a^(2)` and `(x+alpha)^(2)+(y+beta)^(2)=beta^(2)` cut orthogonally if ………..

Text Solution

Verified by Experts

The correct Answer is:
`2(a alpha+b beta)=beta^(2)+alpha^(2)`
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES) |10 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Assertion/Reason|2 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (7) (TRUE AND FALSE) |3 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

The equation of the circle which cuts each of the three circles x^(2)+y^(2)=4,(x-1)^(2)+y^(2)=4 and x^(2)+(y-2)^(2)=4 orthogonally is

If the curves : alpha x^(2)+betay^(2)=1 and alpha'x^(2)+beta'y^(2)=1 intersect orthogonally, prove that (alpha-alpha')beta beta'=(beta-beta')alpha alpha' .

The locus of the centers of the circles which cut the circles x^(2) + y^(2) + 4x – 6y + 9 = 0 and x^(2) + y^(2) – 5x + 4y – 2 = 0 orthogonally is

If (x)/(alpha)+(y)/(beta)=1 touches the circle x^(2)+y^(2)=a^(2) then point ((1)/(alpha),(1)/(beta)) lies on (a) straight line (b) circle (c) parabola (d) ellipse

The angle between the lines (x^(2)+y^(2))sin^(2)alpha=(x cos beta-y sin beta)^(2) is

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then

If a variable circle cuts two circles x^(2)+y^(2)=1 and x^(2)+y^(2)-2x-2y-7=0 orthogonally than loucs of centre of variable circle is

Find the locus of the centres of the circle which cut the circles x^(2)+y^(2)+4x-6y+9=0 and x^(2)+y^(2)+4x+6y+4=0 orthogonally