Home
Class 12
MATHS
The values of lamda for which the equati...

The values of `lamda` for which the equation `x^(2)-y^(2)-x-lamday-2=0` represents a pair of straight lines are

A

`3,-3`

B

`-3,1`

C

`3,1`

D

`-1,1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( \lambda \) for which the equation \[ x^2 - y^2 - x - \lambda y - 2 = 0 \] represents a pair of straight lines, we can follow these steps: ### Step 1: Rewrite the equation in standard form The given equation can be rewritten as: \[ x^2 - y^2 - x - \lambda y - 2 = 0 \] This can be expressed in the general form of a conic section: \[ Ax^2 + By^2 + 2Hxy + 2Gx + 2Fy + C = 0 \] where: - \( A = 1 \) - \( B = -1 \) - \( H = 0 \) - \( G = -\frac{1}{2} \) - \( F = -\frac{\lambda}{2} \) - \( C = -2 \) ### Step 2: Use the condition for a pair of straight lines For the equation to represent a pair of straight lines, the determinant \( \Delta \) must be equal to zero. The determinant is given by: \[ \Delta = \begin{vmatrix} A & H & G \\ H & B & F \\ G & F & C \end{vmatrix} \] Substituting the values we have: \[ \Delta = \begin{vmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & -1 & -\frac{\lambda}{2} \\ -\frac{1}{2} & -\frac{\lambda}{2} & -2 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant: \[ \Delta = 1 \cdot \begin{vmatrix} -1 & -\frac{\lambda}{2} \\ -\frac{\lambda}{2} & -2 \end{vmatrix} - 0 + \left(-\frac{1}{2}\right) \cdot \begin{vmatrix} 0 & -1 \\ -\frac{1}{2} & -\frac{\lambda}{2} \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} -1 & -\frac{\lambda}{2} \\ -\frac{\lambda}{2} & -2 \end{vmatrix} = (-1)(-2) - \left(-\frac{\lambda}{2}\right)\left(-\frac{\lambda}{2}\right) = 2 - \frac{\lambda^2}{4} \] Calculating the second determinant: \[ \begin{vmatrix} 0 & -1 \\ -\frac{1}{2} & -\frac{\lambda}{2} \end{vmatrix} = 0 \cdot \left(-\frac{\lambda}{2}\right) - (-1)\left(-\frac{1}{2}\right) = -\frac{1}{2} \] Thus, we have: \[ \Delta = 1 \cdot \left(2 - \frac{\lambda^2}{4}\right) + \frac{1}{4} = 2 - \frac{\lambda^2}{4} + \frac{1}{4} \] Combine the terms: \[ \Delta = 2 + \frac{1}{4} - \frac{\lambda^2}{4} = \frac{8}{4} + \frac{1}{4} - \frac{\lambda^2}{4} = \frac{9 - \lambda^2}{4} \] ### Step 4: Set the determinant to zero For the equation to represent a pair of straight lines, we set \( \Delta = 0 \): \[ \frac{9 - \lambda^2}{4} = 0 \] Multiplying through by 4 gives: \[ 9 - \lambda^2 = 0 \] ### Step 5: Solve for \( \lambda \) Rearranging gives: \[ \lambda^2 = 9 \] Taking the square root of both sides yields: \[ \lambda = \pm 3 \] ### Conclusion The values of \( \lambda \) for which the equation represents a pair of straight lines are: \[ \lambda = 3 \quad \text{and} \quad \lambda = -3 \]
Promotional Banner

Topper's Solved these Questions

  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES)|2 Videos
  • NUMERICAL METHODS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos

Similar Questions

Explore conceptually related problems

The value of lambda for which the equation x^(2)-y^(2)-x-lambda y-2=0 represent a pair of straight line,are

If the equation x^(2)-y^(2)-x-lamday-2=0 represents a pair of lines then lamda=

Find the value of lambda for which the equation 2x^(2)+4xy+y^(2)+x+3y+2=0 represents a pair of straight line

If the equation 3x^(2)-2y^(2)+lamda xy -x+5y-2=0 represents a pair of straight lines then lamda=

a(x^(2)-y^(2))+xy=0 represents a pair of straight lines for

The equation x^(2)+kxy+y^(2)-5x-7y+6=0 represents a pair of straight lines, then k is