Home
Class 12
MATHS
y=x+2 is any tangent to the parabola y^2...

`y=x+2` is any tangent to the parabola `y^2=8xdot` The point `P` on this tangent is such that the other tangent from it which is perpendicular to it is `(2,4)` (b) `(-2,0)` `(-1,1)` (d) `(2,0)`

A

`(2, 4)`

B

`(-2,0)`

C

`(-1,1)`

D

`(2,0) `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|1 Videos
  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS)|5 Videos
  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|2 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise SELF ASSESSMENT TEST |4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos

Similar Questions

Explore conceptually related problems

y=x+2 is any tangent to the parabola y^(2)=8x. The point P on this tangent is such that the other tangent from it which is perpendicular to it is (2,4)(b)(-2,0)(-1,1)(d)(2,0)

The equation of a tangent to the parabola y^(2)=8x is y=x+2. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is

The equation of a tangent to the parabola y^(2)=12x is 2y+x+12=0. The point on this line such that the other tangent to the parabola is perpendicular to the given tangent is (a,b) then |a+b|=

The point on the curve y=x^2-3x+2 where tangent is perpendicular to y=x is (0,2) (b) (1,\ 0) (c) (-1,\ 6) (d) (2,\ -2)

The point P of the curve y^(2)=2x^(3) such that the tangent at P is perpendicular to the line 4x-3y +2=0 is given by

The equation of the tangent to the curve x^(2)+2y=8 which is the perpendicular to x-2y+1=0 is

The equation of the tangent to the parabola y^(2)=8x which is perpendicular to the line x-3y+8=0 , is

The locus of a point such that the tangents drawn from it to the circle x^(2)+y^(2)-6x-8y=0 are perpendicular to each other is

ML KHANNA-THE PARABOLA -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. The point on the curve y^2 = x, the tangent at which makes an angle 45...

    Text Solution

    |

  2. The portion of a tangent to a parabola cut off between the directrix a...

    Text Solution

    |

  3. y=x+2 is any tangent to the parabola y^2=8xdot The point P on this tan...

    Text Solution

    |

  4. If y = mx +c touches the parabola y^2 = 4a(x+ a), then

    Text Solution

    |

  5. The focal chord of y^2 = 16x is tangent to (x-6)^2 + y^2 = 2, then the...

    Text Solution

    |

  6. The locus of point from which the two tangents drawn to a parabola be ...

    Text Solution

    |

  7. If the chord of contact of tangents from a point P to the parabola y^...

    Text Solution

    |

  8. Tangents are drawn from the point P to the parabola y^2=8x such that ...

    Text Solution

    |

  9. Two tangents are drawn from the point (-2, – 1) to the parabola y^2 =...

    Text Solution

    |

  10. If y+3= m1 (x+2) and y+3= m2 (x+2) are two tangents to the parabola y...

    Text Solution

    |

  11. The equations of common tangent to the parabola y^2 = 4ax and x^2 = 4b...

    Text Solution

    |

  12. If the line x+y=1 touches the parabola y^2 - y+x=0, then the co-ordina...

    Text Solution

    |

  13. The point of intersection of the tangents at the ends of the latus re...

    Text Solution

    |

  14. The equation of tangents to the parabola y^2 = 4ax at the ends of latu...

    Text Solution

    |

  15. Two tangents of the parabola y^2 = 8x, meet the tangent at its vertex ...

    Text Solution

    |

  16. If the tangent at the point P (2,4) to the parabola y^2 = 8x meets the...

    Text Solution

    |

  17. The locus of the point of intersection of tangents to the parabola y^2...

    Text Solution

    |

  18. If y(1),y(2) are the ordinates of two points P and Q on the parabola ...

    Text Solution

    |

  19. Ordinates of three points A,B,C on the parabola y^2 = 4ax are in G.P. ...

    Text Solution

    |

  20. If the tangents at P and Q on a parabola meet in T, then SP, ST and SQ...

    Text Solution

    |