Home
Class 12
MATHS
The foci of the hyperbola 9x^(2)-16y^(2)...

The foci of the hyperbola `9x^(2)-16y^(2)+18x+32y-151=0` are

A

(2, 3), (5, 7)

B

(4, 1) (-6, 1)

C

(0, 0), (5, 3)

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the foci of the hyperbola given by the equation \(9x^2 - 16y^2 + 18x + 32y - 151 = 0\), we will follow these steps: ### Step 1: Rearrange the equation Start by rearranging the equation to group the \(x\) and \(y\) terms: \[ 9x^2 + 18x - 16y^2 + 32y - 151 = 0 \] ### Step 2: Complete the square for \(x\) To complete the square for the \(x\) terms \(9x^2 + 18x\): 1. Factor out the coefficient of \(x^2\): \[ 9(x^2 + 2x) \] 2. Complete the square: \[ x^2 + 2x = (x + 1)^2 - 1 \] 3. Substitute back: \[ 9((x + 1)^2 - 1) = 9(x + 1)^2 - 9 \] ### Step 3: Complete the square for \(y\) Now complete the square for the \(y\) terms \(-16y^2 + 32y\): 1. Factor out \(-16\): \[ -16(y^2 - 2y) \] 2. Complete the square: \[ y^2 - 2y = (y - 1)^2 - 1 \] 3. Substitute back: \[ -16((y - 1)^2 - 1) = -16(y - 1)^2 + 16 \] ### Step 4: Substitute back into the equation Now substitute the completed squares back into the equation: \[ 9((x + 1)^2 - 1) - 16((y - 1)^2 - 1) - 151 = 0 \] This simplifies to: \[ 9(x + 1)^2 - 9 - 16(y - 1)^2 + 16 - 151 = 0 \] Combine the constants: \[ 9(x + 1)^2 - 16(y - 1)^2 - 144 = 0 \] ### Step 5: Rearrange to standard form Rearranging gives: \[ 9(x + 1)^2 - 16(y - 1)^2 = 144 \] Dividing by 144: \[ \frac{(x + 1)^2}{16} - \frac{(y - 1)^2}{9} = 1 \] ### Step 6: Identify parameters From the standard form \(\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1\), we have: - Center \((h, k) = (-1, 1)\) - \(a^2 = 16 \Rightarrow a = 4\) - \(b^2 = 9 \Rightarrow b = 3\) ### Step 7: Calculate \(c\) Using the relationship \(c^2 = a^2 + b^2\): \[ c^2 = 16 + 9 = 25 \Rightarrow c = 5 \] ### Step 8: Find the foci The foci are located at \((h \pm c, k)\): 1. Foci coordinates: \[ (-1 + 5, 1) = (4, 1) \] \[ (-1 - 5, 1) = (-6, 1) \] ### Final Answer The foci of the hyperbola are: \[ (4, 1) \quad \text{and} \quad (-6, 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • THE HYPERBOLA

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE)|1 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS)|5 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos
  • THE PARABOLA

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Assertion/ Reason)|1 Videos

Similar Questions

Explore conceptually related problems

The foci of the hyperbola 4x^(2)-9y^(2)-1=0 are

The foci of the hyperbola 4x^(2)-9y^(2)-1=0 are

The length of the transverse axis of the hyperbola 9x^(2)-16y^(2)-18x -32y - 151 = 0 is

Find the centre, eccentrcity, foci and directrices of the hyperboal : 9x^(2) - 16y^(2) + 18x + 32y - 151 = 0 .

Write the coordinates of the foci of the hyperbola 9x^(2)-16y^(2)=144

The eccentricity of the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0 , is