Home
Class 12
MATHS
The lines (x-a+b)/(alpha-delta)=(y-a)/al...

The lines `(x-a+b)/(alpha-delta)=(y-a)/alpha=(z-a-d)/(alpha+delta),`
`(x-b+c)/(beta-gamma)=(y-b)/beta=(z-a-d)/(beta+gamma)`
are coplanar, and the equation to the plane in which they lie is

A

`x+y+z=0`

B

`x-y+z=0`

C

`x-2y+z=0`

D

`x+y+z=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the plane in which the given lines are coplanar, we can follow these steps: ### Step 1: Write down the equations of the lines The equations of the lines are given as: 1. \(\frac{x-a+b}{\alpha-\delta} = \frac{y-a}{\alpha} = \frac{z-a-d}{\alpha+\delta}\) 2. \(\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-a-d}{\beta+\gamma}\) ### Step 2: Convert the lines into parametric form From the first line, we can express the coordinates \(x\), \(y\), and \(z\) in terms of a parameter \(t\): - \(x = a - b + t(\alpha - \delta)\) - \(y = a + t\alpha\) - \(z = a + d + t(\alpha + \delta)\) From the second line, we can express the coordinates \(x\), \(y\), and \(z\) in terms of another parameter \(s\): - \(x = b - c + s(\beta - \gamma)\) - \(y = b + s\beta\) - \(z = a + d + s(\beta + \gamma)\) ### Step 3: Set up the determinant for coplanarity To check if the lines are coplanar, we can use the determinant condition. The determinant is set up as follows: \[ \begin{vmatrix} x - (a - b) & \alpha - \delta & \beta - \gamma \\ y - a & \alpha & \beta \\ z - (a + d) & \alpha + \delta & \beta + \gamma \end{vmatrix} = 0 \] ### Step 4: Simplify the determinant We will simplify the determinant step by step. We can perform column operations to simplify it. 1. Add the first column to the third column. 2. Subtract twice the second column from the first column. After performing these operations, the determinant simplifies to: \[ \begin{vmatrix} x + z - 2y & 0 & 0 \\ 0 & \alpha - \gamma & \beta - \gamma \\ 0 & \alpha + \delta & \beta + \gamma \end{vmatrix} = 0 \] ### Step 5: Calculate the determinant The determinant simplifies to: \[ (x + z - 2y) \cdot \begin{vmatrix} \alpha - \gamma & \beta - \gamma \\ \alpha + \delta & \beta + \gamma \end{vmatrix} = 0 \] Calculating the 2x2 determinant gives: \[ (\alpha - \gamma)(\beta + \gamma) - (\beta - \gamma)(\alpha + \delta) \] ### Step 6: Set the equation to zero Setting the determinant equal to zero gives us: \[ (x + z - 2y) \cdot K = 0 \] Where \(K\) is the result of the 2x2 determinant. For the lines to be coplanar, either \(K = 0\) or \(x + z - 2y = 0\). ### Step 7: Write the equation of the plane Thus, the equation of the plane in which the lines lie is: \[ x + z - 2y = 0 \] Rearranging gives: \[ x - 2y + z = 0 \] ### Final Answer The required equation of the plane is: \[ \boxed{x - 2y + z = 0} \]
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise PROBLEM SET (4)|19 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE(TRUE AND FALSE)|27 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise PROBLEM SET (2)|12 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Self Assessment Test |35 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Assertion / Reason |2 Videos

Similar Questions

Explore conceptually related problems

Show that the lines (x-a+d)/(alpha-delta)=(y-a)/(alpha)=(z-a-d)/(alpha+delta)(x-b+c)/(beta-gamma)=(y-b)/(beta)=(z-b-c)/(beta+gamma) are coplanar.

Let f(x) = ((x - gamma)(x - delta)) / ((x-alpha)(a-beta)) where, gamma < alpha < delta < beta , then which of the following is correct

If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-delta), z=sin(gamma-alpha)*sin(beta-delta) , then :

If |((beta+gamma-alpha -delta)^4 , (beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4, (gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4, (alpha + beta-gamma-delta)^2,1)|=-k(alpha -beta)(alpha -gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta) , then the value of (k)^(1//2) is ____

If y=1/(1+x^(beta-alpha)+x^(gamma-alpha))+1/(1+x^(alpha-beta)+x^(gamma-beta))+1/(1+x^(alpha-gamma)+x^(beta-gamma)), then (dy)/(dx) is equal to-

If =(beta-gamma)(alpha-delta),y=(gamma-alpha)(beta-delta),z=(alpha-beta)(gamma-delta) ,then value of x^(3)+y^(3)+z^(3)-3xyz is

ML KHANNA-CO-ORDINATE GEOMETRY OF THREE DIMENSION-PROBLEM SET (3)
  1. The S.D between the lines (x+3)/-3=(y+7)/2=(z-6)/4 is equal to

    Text Solution

    |

  2. If the lines x=ay +b, z=cy+d and x=a'y + b', z=c'y + d' are perpendi...

    Text Solution

    |

  3. The lines (x-a+b)/(alpha-delta)=(y-a)/alpha=(z-a-d)/(alpha+delta), (...

    Text Solution

    |

  4. If the straighat lines x=1+s,y=-3-lamdas,z=1+lamdas and x=t/2,y=1+t,z=...

    Text Solution

    |

  5. If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/...

    Text Solution

    |

  6. Consider the planes 3x-6y-2z=15a n d2x+y-2z=5. Statement 1:The parame...

    Text Solution

    |

  7. The lines (x-2)/gamma=(y-4)/2=(z-5)/1 are coplaner ifgamma is

    Text Solution

    |

  8. The line passing through the points (5,1,a) and (3,b,1) crosses the y...

    Text Solution

    |

  9. If the straight lines (x-1)/k = (y-2)/2 =(z-3)/3 and (x-2)/3 = (y-3)...

    Text Solution

    |

  10. Find the distance of a point (2,4,-1) from the line (x+5)/1=(y+3)/4=...

    Text Solution

    |

  11. Distance of the point (x(1),y(1),z(1)) from the line (x-x(2))/1=(y-y(...

    Text Solution

    |

  12. If a line makes angles alpha,beta,gamma with co-ordinate axes, then co...

    Text Solution

    |

  13. The angle between the line (x+1)/3=(y-1)/2=(z-2)/4 and the plane 2x+y-...

    Text Solution

    |

  14. If the angle theta between the line (x+1)/1=(y-1)/2=(z-2)/2 and the pl...

    Text Solution

    |

  15. The angle between the lines 2x=3y=-z and 6x=-y=-4z is

    Text Solution

    |

  16. The direction ratios of the line x-y+z-5=0=x-3y-6 are

    Text Solution

    |

  17. A line with direction cosines proportional to 2,1,2 meet each of the l...

    Text Solution

    |

  18. Read the following passage and answer the questions. Consider the line...

    Text Solution

    |

  19. Consider the line L 1 : x 1 y 2 z 1 312 +++ ==, L2 : x2y2z3 123

    Text Solution

    |

  20. The distance of the point (1,1,1) from the plane passing through the p...

    Text Solution

    |