Home
Class 12
MATHS
If x^(2) + y^(2) =1 and P = ( 3x -4x^(3...

If `x^(2) + y^(2) =1` and `P = ( 3x -4x^(3))^(2) + ( 3y - 4y^(3) ) ^(2)`, then `P ="……………."`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x^2 + y^2 = 1 \) 2. \( P = (3x - 4x^3)^2 + (3y - 4y^3)^2 \) ### Step 1: Expand the expression for \( P \) We need to expand \( P \): \[ P = (3x - 4x^3)^2 + (3y - 4y^3)^2 \] Using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ P = (3x)^2 - 2(3x)(4x^3) + (4x^3)^2 + (3y)^2 - 2(3y)(4y^3) + (4y^3)^2 \] Calculating each term: \[ P = 9x^2 - 24x^4 + 16x^6 + 9y^2 - 24y^4 + 16y^6 \] ### Step 2: Combine like terms Now, we can combine the terms: \[ P = (9x^2 + 9y^2) + (16x^6 + 16y^6) - (24x^4 + 24y^4) \] Using the fact that \( x^2 + y^2 = 1 \): \[ P = 9(1) + 16(x^6 + y^6) - 24(x^4 + y^4) \] ### Step 3: Express \( x^6 + y^6 \) and \( x^4 + y^4 \) To express \( x^6 + y^6 \) and \( x^4 + y^4 \) in terms of \( x^2 + y^2 \): Using the identity: \[ x^6 + y^6 = (x^2 + y^2)(x^4 + y^4) - x^2y^2(x^2 + y^2) \] Let \( s = x^2 + y^2 = 1 \) and \( p = x^2y^2 \): \[ x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 = s^2 - 2p = 1 - 2p \] Substituting back: \[ x^6 + y^6 = s(1 - 2p) - ps = 1 - 3p \] ### Step 4: Substitute back into \( P \) Now substituting \( x^6 + y^6 \) and \( x^4 + y^4 \) back into \( P \): \[ P = 9 + 16(1 - 3p) - 24(1 - 2p) \] Expanding this: \[ P = 9 + 16 - 48p - 24 + 48p \] ### Step 5: Simplify \( P \) Now simplifying: \[ P = 9 + 16 - 24 = 1 \] ### Final Answer Thus, the value of \( P \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) ( MULTIPLE CHOICE QUESTIONS)|35 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) TRUE AND FALSE|4 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) TRUE AND FALSE|5 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If P_(1), P_(2), P_(3) are the perimeters of the three circles. S_(1) : x^(2) + y^(2) + 8x - 6y = 0 S_(2) , 4x^(2) + 4y^(2) -4x - 12y - 186 = 0 and S_(3) : x^(2) + y^(2) -6x + 6y - 9 = 0 repeectively, then the relation amongst P_(1), P_(2) and P_(3) is .............

(3x - 4y)^(2) - (4x + 3y)^(2) = "______" .

x ^ (2) + y ^ (2) + 1, x ^ (2) + 2y ^ (2) + 3, x ^ (2) + 3y ^ (2) + 4y ^ (2) + 2,2y ^ (2) + 6.3y ^ (2) + 8y ^ (2) + 1.2y ^ (2) + 3.3y ^ (2) +4] |

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

simplify: (i) 2p^(3) - 3p^(2) + 4p - 5- 6p^(3) + 2p^(2) - 8p - 2 + 6p + 8 (ii) 2x^(2) - xy + 6x - 4y + 5xy - 4x + 6x^(2) + 3y (iii) x^(4) - 6x^(3) + 2x - 7 + 7x^(3) - x + 5x^(2) + 2 - x^(4)

Find the continued product: (i) (x + 1)(x - 1) (x^(2) + 1) (ii) (x - 3)(x + 3)(x^(2) + 9) (iii) (3x - 2y)(3x + 2y)(9x^(2) + 4y^(2)) (iv) (2p + 3)(2p - 3)(4p^(2) + 9)