Home
Class 12
MATHS
Given 12 sin theta + 5 cos theta =2 x^(2...

Given `12 sin theta + 5 cos theta =2 x^(2) - 8 x +21` and `theta ` and x are the solutions of above then `theta` x is

A

`pi -2 tan^(-1) ""( 5)/( 12)`

B

`pi -2 tan^(-1) ""( 12)/( 5)`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 12 \sin \theta + 5 \cos \theta = 2x^2 - 8x + 21 \) for \( \theta \) and \( x \), we can follow these steps: ### Step 1: Rewrite the left-hand side We can express \( 12 \sin \theta + 5 \cos \theta \) in a different form. We know that it can be rewritten using the sine addition formula. Let \( R = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \). Now, we can express \( 12 \sin \theta + 5 \cos \theta \) as: \[ R (\sin \theta \cos \alpha + \cos \theta \sin \alpha) = R \sin(\theta + \alpha) \] where \( \cos \alpha = \frac{12}{13} \) and \( \sin \alpha = \frac{5}{13} \). ### Step 2: Set up the equation Thus, we can rewrite the equation as: \[ 13 \sin(\theta + \alpha) = 2x^2 - 8x + 21 \] ### Step 3: Determine the ranges The maximum value of \( 13 \sin(\theta + \alpha) \) is \( 13 \) and the minimum value is \( -13 \). Therefore, we have: \[ -13 \leq 2x^2 - 8x + 21 \leq 13 \] ### Step 4: Solve the inequalities 1. For the upper bound: \[ 2x^2 - 8x + 21 \leq 13 \] Simplifying gives: \[ 2x^2 - 8x + 8 \leq 0 \implies x^2 - 4x + 4 \leq 0 \implies (x - 2)^2 \leq 0 \] This implies \( x = 2 \). 2. For the lower bound: \[ 2x^2 - 8x + 21 \geq -13 \] Simplifying gives: \[ 2x^2 - 8x + 34 \geq 0 \] This quadratic has no real roots (discriminant \( (-8)^2 - 4 \cdot 2 \cdot 34 < 0 \)), meaning it is always positive. ### Step 5: Find \( \theta \) Since \( x = 2 \) is the only solution, we substitute \( x = 2 \) back into the original equation: \[ 12 \sin \theta + 5 \cos \theta = 2(2^2) - 8(2) + 21 \] Calculating the right-hand side: \[ = 8 - 16 + 21 = 13 \] Thus, we have: \[ 12 \sin \theta + 5 \cos \theta = 13 \] Using the earlier transformation: \[ 13 \sin(\theta + \alpha) = 13 \] This implies: \[ \sin(\theta + \alpha) = 1 \implies \theta + \alpha = \frac{\pi}{2} \implies \theta = \frac{\pi}{2} - \alpha \] ### Step 6: Find \( \alpha \) From \( \cos \alpha = \frac{12}{13} \) and \( \sin \alpha = \frac{5}{13} \): \[ \alpha = \sin^{-1}\left(\frac{5}{13}\right) \] ### Step 7: Calculate \( \theta x \) Now we need to find \( \theta x \): \[ \theta = \frac{\pi}{2} - \sin^{-1}\left(\frac{5}{13}\right) \] Thus: \[ \theta x = \left(\frac{\pi}{2} - \sin^{-1}\left(\frac{5}{13}\right)\right) \cdot 2 \] This simplifies to: \[ \theta x = \pi - 2 \sin^{-1}\left(\frac{5}{13}\right) \] ### Final Answer \[ \theta x = \pi - 2 \tan^{-1}\left(\frac{5}{12}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (2) TRUE AND FALSE|4 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) ( MULTIPLE CHOICE QUESTIONS)|23 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (1) FILL IN THE BLANKS|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Given 12sin theta+5cos theta=2x^(2)-8x+21 and theta and x are the solutions of the above then theta x is

If p and p_1 be the lengths of the perpendiculars drawn from the origin upon the straight lines x sin theta + y cos theta = 1/2 a sin 2 theta and x cos theta - y sin theta = a cos 2 theta , prove that 4p^2 + p^2_1 = a^2 .

If x cos theta - sin theta =1 , then x^2 + (1 + x^2 ) sin theta equals

8sin theta cos theta cos2 theta cos4 theta=sin x the x=

If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin^(2) theta ),( x , sin^(2) theta , cos^2 theta ):}| theta in (0,pi//2), then roots of f(x)=0 are

If 5 cos theta -12 sin theta =0 , the value of (2 sin theta +cos theta )/(cos theta - sin theta ) यदि 5 cos theta -12 sin theta =0 , है, तो (2 sin theta +cos theta )/(cos theta - sin theta ) का मान ज्ञात करें |

If x sin theta = ( 5 sqrt3)/(2) and x cos theta = (5)/(2) then what is the value of x ?

8sin theta cos theta cos2 theta cos4 theta=sin x rArr x=

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (2) ( MULTIPLE CHOICE QUESTIONS)
  1. If a cos theta - b sin theta = lambda, then AA real theta

    Text Solution

    |

  2. sqrt( 3) sin x + cos x is maximum when x is

    Text Solution

    |

  3. The set of values of 'a' for which the equation sqrt(a) "cos" x -2 "...

    Text Solution

    |

  4. Given 12 sin theta + 5 cos theta =2 x^(2) - 8 x +21 and theta and x a...

    Text Solution

    |

  5. If cos 25^(@) + sin 25^(@) =0, then: cos 50^(@)=

    Text Solution

    |

  6. The equation sin x ( sin x + cos x ) = k has real solution if and only...

    Text Solution

    |

  7. The maximum value of 12 sin theta -9 sin ^(2) theta is

    Text Solution

    |

  8. cos2 theta+2 costheta is always

    Text Solution

    |

  9. If l,g are the least and greatest values of 9 cos 2theta - 24 cos thet...

    Text Solution

    |

  10. The ratio of the greatest value of 2-cos x+s in^2x to its least value ...

    Text Solution

    |

  11. If cos A = 3/4 then the value of 32sin( A/2)* sin (5A/2) is.

    Text Solution

    |

  12. The value of sin^3 10^0+sin^3 50^0-sin^3 70^0 is equal to -3/2 (b) 3/...

    Text Solution

    |

  13. If y = 4sin ^(2) theta - cos 2 theta, then y lies in the interval

    Text Solution

    |

  14. If x = ( 4 lambda)/( 1+ lambda^(2)) and y = ( 2 - 2 lambda^(2))/( 1+ ...

    Text Solution

    |

  15. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  16. The given expression sec^2 theta =(4xy)/((x+y)^(2)) is true if and onl...

    Text Solution

    |

  17. If sin x + sin y = 3 ( cos y - cos x ), then the value of sin 3x + si...

    Text Solution

    |

  18. If A+B+C= pi ( A,B,C gt 0) and the angle C is obtuse, then

    Text Solution

    |

  19. If sin(x+3 alpha)=3sin (alpha-x) then

    Text Solution

    |

  20. If 0 lt x lt 1", then " sqrt(1+x^(2))[{x cos (cot^(-1)x) + sin ( cot...

    Text Solution

    |