Home
Class 12
MATHS
The value of tan 3A - tan 2A - tan A is ...

The value of `tan 3A - tan 2A - tan A` is equal to

A

tan 3A tan 2A tan A

B

`-`tan 3A tan 2A tan A

C

tanA tan 2A - tan2A tan 3A - tan 3A tan A

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 3A - \tan 2A - \tan A \), we can use the tangent addition formula. Here’s a step-by-step solution: ### Step 1: Express \( \tan 3A \) Using the tangent addition formula, we can express \( \tan 3A \) as: \[ \tan 3A = \tan(2A + A) = \frac{\tan 2A + \tan A}{1 - \tan 2A \tan A} \] ### Step 2: Substitute \( \tan 3A \) into the expression Now, substitute this expression for \( \tan 3A \) into \( \tan 3A - \tan 2A - \tan A \): \[ \tan 3A - \tan 2A - \tan A = \frac{\tan 2A + \tan A}{1 - \tan 2A \tan A} - \tan 2A - \tan A \] ### Step 3: Combine the terms To combine the terms, we need a common denominator: \[ = \frac{\tan 2A + \tan A - \tan 2A(1 - \tan 2A \tan A) - \tan A(1 - \tan 2A \tan A)}{1 - \tan 2A \tan A} \] ### Step 4: Simplify the numerator Now, simplify the numerator: \[ = \frac{\tan 2A + \tan A - \tan 2A + \tan 2A \tan^2 A - \tan A + \tan A \tan 2A}{1 - \tan 2A \tan A} \] This simplifies to: \[ = \frac{\tan 2A \tan^2 A + \tan 2A \tan A}{1 - \tan 2A \tan A} \] ### Step 5: Factor out common terms Factor out \( \tan 2A \): \[ = \frac{\tan 2A (\tan^2 A + \tan A)}{1 - \tan 2A \tan A} \] ### Step 6: Final expression Thus, the final expression for \( \tan 3A - \tan 2A - \tan A \) is: \[ = \frac{\tan 2A (\tan^2 A + \tan A)}{1 - \tan 2A \tan A} \] ### Conclusion The value of \( \tan 3A - \tan 2A - \tan A \) is given by the expression derived above. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The value of tan 5A - tan 3A - tan 2A is equal to

The value of tan 3 A - tan A is equal to

If sin A = (3)/(5) and cos B = (12)/(13) . Then the value of (tan A - tan B)/(1 + tan A tan B) is equal to

The value of [(sec A+tan A)(1-sin A)] is equal to tan^(2)Asin A

inttanx tan 2x tan 3x dx is equal to

The value of tan 9^@ - tan 27^@ - tan 63^@ + tan 81^@ is equal to:

The value of tan65^(@) - 2tan40^(@) is equal to -

Find the value of tan 3A in terms of tan A

If A+B+ C=(pi)/(2) then what is the value of tan A tan B +tan B. tan C + tan C tan A?

The value of tan 20^(@) tan 40^(@) tan 80^(@) is equal to