Home
Class 12
MATHS
tan 5x - tan 3x - tan 2x=...

`tan 5x - tan 3x - tan 2x=`

A

tan5x tan 3x tan 2x

B

cos 5x cos 3x cos 2x

C

sin 5x sin 3x sin 2x

D

tan 8x tan 3x tan 2x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 5x - \tan 3x - \tan 2x = 0 \), we can use the tangent addition formula. Here’s a step-by-step solution: ### Step 1: Use the Tangent Addition Formula We know that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] We can express \( \tan 5x \) as \( \tan(3x + 2x) \). ### Step 2: Apply the Formula Using the formula, we have: \[ \tan 5x = \tan(3x + 2x) = \frac{\tan 3x + \tan 2x}{1 - \tan 3x \tan 2x} \] ### Step 3: Substitute into the Equation Now, substituting this into our original equation: \[ \tan 5x - \tan 3x - \tan 2x = 0 \] becomes: \[ \frac{\tan 3x + \tan 2x}{1 - \tan 3x \tan 2x} - \tan 3x - \tan 2x = 0 \] ### Step 4: Clear the Denominator Multiply through by \( 1 - \tan 3x \tan 2x \) to eliminate the fraction: \[ \tan 3x + \tan 2x - \tan 3x(1 - \tan 3x \tan 2x) - \tan 2x(1 - \tan 3x \tan 2x) = 0 \] ### Step 5: Expand the Equation Expanding gives: \[ \tan 3x + \tan 2x - \tan 3x + \tan 3x \tan 2x \tan 3x - \tan 2x + \tan 3x \tan 2x \tan 2x = 0 \] This simplifies to: \[ \tan 3x \tan 2x (\tan 3x + \tan 2x) = 0 \] ### Step 6: Factor the Equation Thus, we have: \[ \tan 3x \tan 2x (\tan 3x + \tan 2x) = 0 \] ### Step 7: Solve the Factors This gives us two cases to consider: 1. \( \tan 3x = 0 \) 2. \( \tan 2x = 0 \) 3. \( \tan 3x + \tan 2x = 0 \) ### Step 8: Find Solutions 1. From \( \tan 3x = 0 \): \[ 3x = n\pi \implies x = \frac{n\pi}{3} \] 2. From \( \tan 2x = 0 \): \[ 2x = m\pi \implies x = \frac{m\pi}{2} \] 3. From \( \tan 3x + \tan 2x = 0 \): \[ \tan 3x = -\tan 2x \] ### Conclusion The solutions for \( x \) are: \[ x = \frac{n\pi}{3}, \quad x = \frac{m\pi}{2} \quad \text{and} \quad \tan 3x = -\tan 2x \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Show that tan" "3x" "tan" "2x" "tan" "x" "=" "tan 3x - tan 2x - tan x .

tan 5x tan3x tan2x=

Evaluate lim_(x to 0) (tan x + 4 tan 2x - 3tan 3x)/(x^(2) tan x)

Solve tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi] .

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

int tan 2 x tan 3x tan 5x dx = log | sec^(a) 2x. Sec^(b) 3x. Sec^(c) 5x| + k . Then:\

tan 5x.tan3x.tan 2x =

STATEMENT-1 : int tan5xtan3xtan2xdx is equal to (log|sec5x|)/(5)-(log|sec3x|)/(3)-(log|sec2x|)/(2)+c and STATEMENT-2: tan5x-tan3x-tan2x=tan5xtan3xtan2x .

Evaluate : int tan 2x tan 3x tan 5x dx