Home
Class 12
MATHS
tan 70^(@) - tan 20^(@) =...

`tan 70^(@) - tan 20^(@) =`

A

`tan 50^(@)`

B

`cot 50^(@)`

C

`2 tan 50^(@)`

D

`2 cot 50^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan 70^\circ - \tan 20^\circ \), we can use the tangent subtraction formula. The formula states that: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] However, in our case, we can also use the identity for the tangent of complementary angles. Notably, we have: \[ \tan(90^\circ - x) = \cot x \] This means that: \[ \tan 70^\circ = \cot 20^\circ \] Now, we can rewrite the expression: 1. **Substituting the identity:** \[ \tan 70^\circ - \tan 20^\circ = \cot 20^\circ - \tan 20^\circ \] 2. **Using the identity for cotangent:** \[ \cot 20^\circ = \frac{1}{\tan 20^\circ} \] 3. **Substituting this back into the expression:** \[ \cot 20^\circ - \tan 20^\circ = \frac{1}{\tan 20^\circ} - \tan 20^\circ \] 4. **Finding a common denominator:** \[ = \frac{1 - \tan^2 20^\circ}{\tan 20^\circ} \] 5. **Using the Pythagorean identity:** Since \(1 - \tan^2 x = \frac{1}{\sec^2 x}\), we can rewrite it as: \[ 1 - \tan^2 20^\circ = \frac{1}{\sec^2 20^\circ} \] 6. **Substituting this back:** \[ = \frac{\frac{1}{\sec^2 20^\circ}}{\tan 20^\circ} = \frac{1}{\tan 20^\circ \sec^2 20^\circ} \] 7. **Using the identity \(\sec^2 x = 1 + \tan^2 x\):** \[ = \frac{1}{\tan 20^\circ (1 + \tan^2 20^\circ)} \] 8. **Final simplification:** This expression can be simplified further, but we can also evaluate it numerically or use a calculator to find the approximate value. Thus, the final answer is: \[ \tan 70^\circ - \tan 20^\circ = 2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

tan70 ^ (@) - tan20 ^ (@) = k cot40 ^ (@) rArr k =

tan65 ^ (@) - tan20 ^ (@) - tan65 ^ (@) tan20 ^ (@) =

tan 20^(@) + tan 25^(@) +tan 20^@ tan25^(@)=

The value of sqrt(3) tan10^(@)+sqrt(3) tan 20^(@)+1 tan 10^(@)* tan 20^(@) is _____

The value of (cot 54^(@))/(tan 36^(@)) + (tan 20^(@))/(cot 70^(@)) is

tan 40^(@) +2* tan 10^(@) = A) tan30^(@) B) tan50^(@) C) tan70^(@) D) tan90^(@)