Home
Class 12
MATHS
If sin alpha = 12//13 , ( 0 lt alpha lt ...

If `sin alpha = 12//13 , ( 0 lt alpha lt pi //2)` and `cos beta = - ( 3)/( 5) ( pi lt beta lt ( 3)/( 2) pi )`, the value of `sin ( alpha + beta )` is

A

`- 56//65`

B

`16//65`

C

`56//65`

D

`- 16//65`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin(\alpha + \beta) \) given \( \sin \alpha = \frac{12}{13} \) and \( \cos \beta = -\frac{3}{5} \), we can follow these steps: ### Step 1: Find \( \cos \alpha \) Since \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha \] \[ \cos^2 \alpha = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] \[ \cos \alpha = \sqrt{\frac{25}{169}} = \frac{5}{13} \] (Hint: Use the Pythagorean identity to find the cosine value.) ### Step 2: Find \( \sin \beta \) Since \( \sin^2 \beta + \cos^2 \beta = 1 \): \[ \sin^2 \beta = 1 - \cos^2 \beta \] \[ \sin^2 \beta = 1 - \left(-\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \sin \beta = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \] (Note: Since \( \beta \) is in the third quadrant, \( \sin \beta \) is negative.) (Hint: Again, use the Pythagorean identity to find the sine value.) ### Step 3: Use the sine addition formula The formula for \( \sin(\alpha + \beta) \) is: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting the values we found: \[ \sin(\alpha + \beta) = \left(\frac{12}{13}\right)\left(-\frac{3}{5}\right) + \left(\frac{5}{13}\right)\left(-\frac{4}{5}\right) \] (Hint: Apply the sine addition formula correctly.) ### Step 4: Calculate each term Calculating the first term: \[ \sin \alpha \cos \beta = \frac{12 \times -3}{13 \times 5} = -\frac{36}{65} \] Calculating the second term: \[ \cos \alpha \sin \beta = \frac{5 \times -4}{13 \times 5} = -\frac{20}{65} \] (Hint: Ensure to multiply and simplify correctly.) ### Step 5: Combine the results Now, combine the results from Step 4: \[ \sin(\alpha + \beta) = -\frac{36}{65} - \frac{20}{65} = -\frac{56}{65} \] (Hint: Combine fractions by adding the numerators.) ### Final Answer Thus, the value of \( \sin(\alpha + \beta) \) is: \[ \sin(\alpha + \beta) = -\frac{56}{65} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If sin alpha = -3/5 , pi lt alpha lt 3pi/2 then cos alpha/2 = 1/sqrt10

If sin theta = (12)/(13) (0 lt theta lt (pi)/(2)) and cos phi = (-3)/(5) (pi lt phi lt (3pi)/(2)) then 65 sin (theta + phi) + 60 equals to "_______"

If 13 sin alpha = 12, where pi//2 lt alpha lt pi, and 3 sec beta = 5, where 3pi//2 lt beta lt 2pi , evaluate : 5tan alpha+3 tan^(2)beta.

If cos alpha + cos beta + cos gamma = 0 , where 0 lt alpha le (pi)/(2),0 lt beta le (pi)/(2),0 lt gamma le (pi)/(2) . then what is the value of sin alpha + sin beta + sin gamma ?

If sin alpha = (-3)/(5), where pi lt alpha lt (3pi)/(2), then cos ((alpha)/(2))=

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If sinalpha=15//17, (pi//2) ltalpha ltpi and secbeta=13//12, (3pi//2) lt beta lt 2pi. then sin(alpha-beta)=

If cot alpha=(1)/(2) , sec beta=(-5)/(3) where pi lt alpha lt (3pi)/2 and (pi)/(2) lt beta lt pi Find the value of tan(alpha +beta)

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. cot 22(1^(@))/( 2)

    Text Solution

    |

  2. If tan theta = a//b, then b cos 2 theta + a sin 2 theta =

    Text Solution

    |

  3. If sin alpha = 12//13 , ( 0 lt alpha lt pi //2) and cos beta = - ( 3)...

    Text Solution

    |

  4. If tan theta =a - ( 1)/( 4a) , then sec theta - tan theta=

    Text Solution

    |

  5. If theta and phi are angles in the first quadrant such that tan theta ...

    Text Solution

    |

  6. The vlaue of tan 81^(@) - tan 63^(@) - tan 27^(@)+ tan 9^(@) is equ...

    Text Solution

    |

  7. Find the angle theta whose cosine is equal to its tangent.

    Text Solution

    |

  8. Prove that: t a nA+tan(60^0+A)-t a n(60^0-A)=3t a n3A

    Text Solution

    |

  9. If tan alpha + tan ( alpha + ( pi )/( 3) ) + tan ( alpha + ( 2pi )/( 3...

    Text Solution

    |

  10. Prove that :"sin"As in(60^0-A)s in(60^0+A)=1/4sin3A

    Text Solution

    |

  11. If x is A.M. of tan "" ( pi )/( 9 ) and tan"" ( 5pi )/( 18) and y is A...

    Text Solution

    |

  12. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  13. The value of 2tanpi/(10)+3secpi/(10)-\ 4cospi/(10) is 0 b. 1 c. sqrt(5...

    Text Solution

    |

  14. The value of sin 50^(@) - sin70^(@) + sin 10^(@) is equal to

    Text Solution

    |

  15. The value of sqrt3"cosec"20^@ - sec 20^@ is equal to

    Text Solution

    |

  16. Expression (1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@)) equals

    Text Solution

    |

  17. The value of (1)/( sin10^(@)) - ( sqrt( 3))/( cos 10^(@))=

    Text Solution

    |

  18. The least value of cos^(2) theta - 6 sin theta cos theta + 3sin^(2) th...

    Text Solution

    |

  19. If tanalpha=m/(m+1)a n dtanbeta=1/(2m+1) . Find the possible values of...

    Text Solution

    |

  20. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |