Home
Class 12
MATHS
If tan theta =a - ( 1)/( 4a) , then sec ...

If `tan theta =a - ( 1)/( 4a) `, then `sec theta - tan theta=`

A

2a

B

`-2a, ( 1)/( 2a)`

C

`2a, - (1)/( 2a)`

D

`2a , ( 1)/( 2a )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan \theta = a - \frac{1}{4a} \) and we need to find \( \sec \theta - \tan \theta \), we can follow these steps: ### Step 1: Find \( \sec^2 \theta \) Using the identity \( \sec^2 \theta = 1 + \tan^2 \theta \), we can express \( \sec^2 \theta \) in terms of \( \tan \theta \). \[ \tan \theta = a - \frac{1}{4a} \] Now, we square \( \tan \theta \): \[ \tan^2 \theta = \left(a - \frac{1}{4a}\right)^2 = a^2 - 2 \cdot a \cdot \frac{1}{4a} + \left(\frac{1}{4a}\right)^2 \] Calculating this gives: \[ \tan^2 \theta = a^2 - \frac{1}{2} + \frac{1}{16a^2} \] Now, substituting this into the identity for \( \sec^2 \theta \): \[ \sec^2 \theta = 1 + \left(a^2 - \frac{1}{2} + \frac{1}{16a^2}\right) \] Simplifying this: \[ \sec^2 \theta = 1 + a^2 - \frac{1}{2} + \frac{1}{16a^2} = a^2 + \frac{1}{2} + \frac{1}{16a^2} \] ### Step 2: Find \( \sec \theta \) To find \( \sec \theta \), we take the square root of \( \sec^2 \theta \): \[ \sec \theta = \sqrt{a^2 + \frac{1}{2} + \frac{1}{16a^2}} \] This can be rewritten as: \[ \sec \theta = \sqrt{\left(a + \frac{1}{4a}\right)^2} \] Thus, we have: \[ \sec \theta = a + \frac{1}{4a} \quad \text{(taking the positive root)} \] ### Step 3: Calculate \( \sec \theta - \tan \theta \) Now we can find \( \sec \theta - \tan \theta \): \[ \sec \theta - \tan \theta = \left(a + \frac{1}{4a}\right) - \left(a - \frac{1}{4a}\right) \] Simplifying this gives: \[ \sec \theta - \tan \theta = a + \frac{1}{4a} - a + \frac{1}{4a} = \frac{1}{2a} \] ### Step 4: Consider the negative root If we consider the negative root for \( \sec \theta \): \[ \sec \theta = -\left(a + \frac{1}{4a}\right) \] Then: \[ \sec \theta - \tan \theta = -\left(a + \frac{1}{4a}\right) - \left(a - \frac{1}{4a}\right) \] This simplifies to: \[ \sec \theta - \tan \theta = -2a \] ### Final Result Thus, the two possible values for \( \sec \theta - \tan \theta \) are: \[ \sec \theta - \tan \theta = \frac{1}{2a} \quad \text{or} \quad -2a \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If tan theta=x-(1)/(4x), then sec theta-tan theta is equal to

If tan theta=p-(1)/(4p), then sec theta-tan theta=(i)2p or (1)/(2p)(ii)(1)/(2p) or -2p(iii)-(1)/(2p) or 2p (iv) -(1)/(2p) or -2p

If tan theta=x-(1)/(4x), then sec theta-tan theta is equal to -2x,(1)/(2x) b.(1)/(2x),2x c.2x d.2x,(1)/(2x)

If sec theta + tan theta=(4)/(3) , then sec theta tan theta =_______

If sec theta + tan theta = 12.5 , then sec theta - tan theta = ?

If sec theta + tan theta = 4 , then sec theta- tan theta =?

If sec theta+tan theta=2 , then sec theta-tan theta = ?

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

If : sec theta * tan theta (sectheta + tan theta) + (sec theta - tan theta) = sec^(n) theta + tan^(n) theta, "then" : n = A)1 B)2 C)3 D)4

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. If tan theta = a//b, then b cos 2 theta + a sin 2 theta =

    Text Solution

    |

  2. If sin alpha = 12//13 , ( 0 lt alpha lt pi //2) and cos beta = - ( 3)...

    Text Solution

    |

  3. If tan theta =a - ( 1)/( 4a) , then sec theta - tan theta=

    Text Solution

    |

  4. If theta and phi are angles in the first quadrant such that tan theta ...

    Text Solution

    |

  5. The vlaue of tan 81^(@) - tan 63^(@) - tan 27^(@)+ tan 9^(@) is equ...

    Text Solution

    |

  6. Find the angle theta whose cosine is equal to its tangent.

    Text Solution

    |

  7. Prove that: t a nA+tan(60^0+A)-t a n(60^0-A)=3t a n3A

    Text Solution

    |

  8. If tan alpha + tan ( alpha + ( pi )/( 3) ) + tan ( alpha + ( 2pi )/( 3...

    Text Solution

    |

  9. Prove that :"sin"As in(60^0-A)s in(60^0+A)=1/4sin3A

    Text Solution

    |

  10. If x is A.M. of tan "" ( pi )/( 9 ) and tan"" ( 5pi )/( 18) and y is A...

    Text Solution

    |

  11. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  12. The value of 2tanpi/(10)+3secpi/(10)-\ 4cospi/(10) is 0 b. 1 c. sqrt(5...

    Text Solution

    |

  13. The value of sin 50^(@) - sin70^(@) + sin 10^(@) is equal to

    Text Solution

    |

  14. The value of sqrt3"cosec"20^@ - sec 20^@ is equal to

    Text Solution

    |

  15. Expression (1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@)) equals

    Text Solution

    |

  16. The value of (1)/( sin10^(@)) - ( sqrt( 3))/( cos 10^(@))=

    Text Solution

    |

  17. The least value of cos^(2) theta - 6 sin theta cos theta + 3sin^(2) th...

    Text Solution

    |

  18. If tanalpha=m/(m+1)a n dtanbeta=1/(2m+1) . Find the possible values of...

    Text Solution

    |

  19. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |

  20. A = 18^(@)and cos 2A=

    Text Solution

    |