Home
Class 12
MATHS
If theta and phi are angles in the first...

If `theta` and `phi` are angles in the first quadrant such that `tan theta = 1//7` and `sin phi =1 // sqrt( 10)` , then

A

`theta + 2 phi = 90^(@)`

B

`theta = 2phi = 30^(@)`

C

` theta + 2 phi = 75^(@)`

D

`theta + 2phi = 45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a relationship between the angles \( \theta \) and \( \phi \) given that \( \tan \theta = \frac{1}{7} \) and \( \sin \phi = \frac{1}{\sqrt{10}} \). ### Step 1: Find \( \sin \theta \) and \( \cos \theta \) Given: \[ \tan \theta = \frac{1}{7} \] This means: \[ \frac{\sin \theta}{\cos \theta} = \frac{1}{7} \] We can represent \( \sin \theta \) and \( \cos \theta \) in terms of a right triangle where the opposite side (perpendicular) is 1 and the adjacent side (base) is 7. Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{1^2 + 7^2} = \sqrt{1 + 49} = \sqrt{50} = 5\sqrt{2} \] Now we can find \( \sin \theta \) and \( \cos \theta \): \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{1}{5\sqrt{2}}, \quad \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{7}{5\sqrt{2}} \] ### Step 2: Find \( \cos \phi \) and \( \tan \phi \) Given: \[ \sin \phi = \frac{1}{\sqrt{10}} \] Using the Pythagorean identity \( \sin^2 \phi + \cos^2 \phi = 1 \): \[ \cos^2 \phi = 1 - \sin^2 \phi = 1 - \left(\frac{1}{\sqrt{10}}\right)^2 = 1 - \frac{1}{10} = \frac{9}{10} \] Thus: \[ \cos \phi = \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}} \] Now we can find \( \tan \phi \): \[ \tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{\frac{1}{\sqrt{10}}}{\frac{3}{\sqrt{10}}} = \frac{1}{3} \] ### Step 3: Find \( \sin 2\phi \) Using the double angle formula: \[ \sin 2\phi = 2 \sin \phi \cos \phi \] Substituting the values: \[ \sin 2\phi = 2 \cdot \frac{1}{\sqrt{10}} \cdot \frac{3}{\sqrt{10}} = \frac{6}{10} = \frac{3}{5} \] ### Step 4: Find \( \cos 2\phi \) Using the identity \( \cos 2\phi = 1 - 2\sin^2 \phi \): \[ \cos 2\phi = 1 - 2\left(\frac{1}{\sqrt{10}}\right)^2 = 1 - 2 \cdot \frac{1}{10} = 1 - \frac{2}{10} = \frac{4}{5} \] ### Step 5: Use the sine addition formula We want to find \( \sin(\theta + 2\phi) \): \[ \sin(\theta + 2\phi) = \sin \theta \cos 2\phi + \cos \theta \sin 2\phi \] Substituting the values: \[ \sin(\theta + 2\phi) = \left(\frac{1}{5\sqrt{2}}\right) \left(\frac{4}{5}\right) + \left(\frac{7}{5\sqrt{2}}\right) \left(\frac{3}{5}\right) \] Calculating each term: \[ = \frac{4}{25\sqrt{2}} + \frac{21}{25\sqrt{2}} = \frac{25}{25\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 6: Relate \( \sin(\theta + 2\phi) \) to an angle We know that: \[ \sin(\theta + 2\phi) = \frac{1}{\sqrt{2}} \implies \theta + 2\phi = 45^\circ \] ### Final Result Thus, we have established the relationship: \[ \theta + 2\phi = 45^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If theta and phi are angles in first quadrant and tan theta=(1)/(7) and sin phi=(1)/(sqrt(10)) then

If theta and phi lie in the first quadrant such that sin theta =(8)/(17) "and cos " phi =(12)/(13) find the values of (i) " sin"(theta- phi) " "(ii) " cos " (theta + phi) " " (iii) " tan " (theta - phi)

If theta & phi lies in teh first quadrant such that sin theta=8/17 and cos phi=12/13 then find the value of sin(theta-phi)

If tan theta=1/2 and tan phi=1/3, then tan(2 theta+phi)

If 0^(@)

If sin theta =(15)/(17) " and cos " phi = (12)/(13) where theta " and " phi both lie in the first quadrant find the values of (i) " sin " (theta + phi) " " (ii) " cos " (theta - phi) " " (iii) " tan " ( theta + phi)

If tan theta=(5)/(6) and tan phi=(1)/(11) , then theta+phi =______

If cos theta =(4)/(5) " and cos " phi =(12)/(13) " where " theta " and " phi both lie in the fourth quadrant find the values of (i) " cos " (theta + phi) " " (ii) " sin " (theta -phi) " ' (iii) " tan " (theta + phi)

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. If sin alpha = 12//13 , ( 0 lt alpha lt pi //2) and cos beta = - ( 3)...

    Text Solution

    |

  2. If tan theta =a - ( 1)/( 4a) , then sec theta - tan theta=

    Text Solution

    |

  3. If theta and phi are angles in the first quadrant such that tan theta ...

    Text Solution

    |

  4. The vlaue of tan 81^(@) - tan 63^(@) - tan 27^(@)+ tan 9^(@) is equ...

    Text Solution

    |

  5. Find the angle theta whose cosine is equal to its tangent.

    Text Solution

    |

  6. Prove that: t a nA+tan(60^0+A)-t a n(60^0-A)=3t a n3A

    Text Solution

    |

  7. If tan alpha + tan ( alpha + ( pi )/( 3) ) + tan ( alpha + ( 2pi )/( 3...

    Text Solution

    |

  8. Prove that :"sin"As in(60^0-A)s in(60^0+A)=1/4sin3A

    Text Solution

    |

  9. If x is A.M. of tan "" ( pi )/( 9 ) and tan"" ( 5pi )/( 18) and y is A...

    Text Solution

    |

  10. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  11. The value of 2tanpi/(10)+3secpi/(10)-\ 4cospi/(10) is 0 b. 1 c. sqrt(5...

    Text Solution

    |

  12. The value of sin 50^(@) - sin70^(@) + sin 10^(@) is equal to

    Text Solution

    |

  13. The value of sqrt3"cosec"20^@ - sec 20^@ is equal to

    Text Solution

    |

  14. Expression (1)/(cos 290^(@)) + (1)/(sqrt(3) sin 250^(@)) equals

    Text Solution

    |

  15. The value of (1)/( sin10^(@)) - ( sqrt( 3))/( cos 10^(@))=

    Text Solution

    |

  16. The least value of cos^(2) theta - 6 sin theta cos theta + 3sin^(2) th...

    Text Solution

    |

  17. If tanalpha=m/(m+1)a n dtanbeta=1/(2m+1) . Find the possible values of...

    Text Solution

    |

  18. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |

  19. A = 18^(@)and cos 2A=

    Text Solution

    |

  20. If cot (alpha + beta )=0 , then sin(alpha+2beta )=

    Text Solution

    |