Home
Class 12
MATHS
( sec 8 theta -1 )/( sec 4 theta -1) =...

`( sec 8 theta -1 )/( sec 4 theta -1) = `

A

`tan 8 theta tan 2 theta`

B

`tan 8 theta // tan 2 theta`

C

`cot 8 theta cot 2 theta`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(( \sec 8\theta - 1 ) / ( \sec 4\theta - 1 )\), we will follow these steps: ### Step 1: Rewrite secant in terms of cosine Recall that \(\sec \theta = \frac{1}{\cos \theta}\). Therefore, we can rewrite the expression: \[ \sec 8\theta - 1 = \frac{1}{\cos 8\theta} - 1 = \frac{1 - \cos 8\theta}{\cos 8\theta} \] \[ \sec 4\theta - 1 = \frac{1}{\cos 4\theta} - 1 = \frac{1 - \cos 4\theta}{\cos 4\theta} \] ### Step 2: Substitute into the original expression Substituting these into the original expression gives: \[ \frac{\sec 8\theta - 1}{\sec 4\theta - 1} = \frac{\frac{1 - \cos 8\theta}{\cos 8\theta}}{\frac{1 - \cos 4\theta}{\cos 4\theta}} = \frac{(1 - \cos 8\theta) \cdot \cos 4\theta}{(1 - \cos 4\theta) \cdot \cos 8\theta} \] ### Step 3: Use the trigonometric identity Using the identity \(1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right)\), we can express \(1 - \cos 8\theta\) and \(1 - \cos 4\theta\): \[ 1 - \cos 8\theta = 2 \sin^2 (4\theta) \] \[ 1 - \cos 4\theta = 2 \sin^2 (2\theta) \] ### Step 4: Substitute the identities back into the expression Substituting these identities into our expression gives: \[ \frac{(2 \sin^2 (4\theta)) \cdot \cos 4\theta}{(2 \sin^2 (2\theta)) \cdot \cos 8\theta} \] ### Step 5: Simplify the expression The \(2\) cancels out: \[ \frac{\sin^2 (4\theta) \cdot \cos 4\theta}{\sin^2 (2\theta) \cdot \cos 8\theta} \] ### Step 6: Use the double angle identity We can use the double angle identity for sine: \[ \sin (2\theta) = 2 \sin \theta \cos \theta \] Thus, \(\sin^2 (4\theta) = (2 \sin (2\theta) \cos (2\theta))^2 = 4 \sin^2 (2\theta) \cos^2 (2\theta)\). ### Step 7: Substitute and simplify further Substituting this back: \[ \frac{4 \sin^2 (2\theta) \cos^2 (2\theta) \cdot \cos 4\theta}{\sin^2 (2\theta) \cdot \cos 8\theta} \] Cancelling \(\sin^2 (2\theta)\): \[ \frac{4 \cos^2 (2\theta) \cdot \cos 4\theta}{\cos 8\theta} \] ### Step 8: Final simplification Using the identity \(\cos 8\theta = 2 \cos^2 (4\theta) - 1\), we can express \(\cos 8\theta\) in terms of \(\cos 4\theta\) and simplify further if needed. ### Final Result The final expression simplifies to: \[ \tan 8\theta / \tan 2\theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Prove that (sec 8theta-1)/(sec 4 theta -1) = (tan 8theta)/(tan 2theta)

(1-sec8 theta)/(1-sec4 theta)

Prove that: sqrt((sectheta -1)/(sec theta +1)) + sqrt((sec theta +1)/(sec theta -1)) = "2cosec" theta

prove :(sec8 theta-1)/(sec4 theta-1)=(tan8 theta)/(tan2 theta)

Prove that: (sec8 theta-1)/(sec4 theta-1)=(tan8 theta)/(tan2 theta)

Prove that: sqrt((sec theta-1)/(sec theta +1)) + sqrt((sec theta + 1)/(sec theta-1)) = 2 "cosec" theta

Prove each of the following identities : (i) (sec theta -1)/(sec theta +1) =(sin^(2) theta)/((1+ cos theta)^(2) ) (ii) (sec theta - tan theta)/(sec theta + tan theta) = (cos^(2) theta)/((1+ sintheta)^(2))

Prove that (tan 8 theta)/(tan theta)=(1+ sec 2 theta)(1+ sec 4 theta)(1+ sec 8 theta)

sqrt((sec theta-1)/(sec theta+1))+sqrt((sec theta+1)/(sec theta-1))=2cos ec theta

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. If cot (alpha + beta )=0 , then sin(alpha+2beta )=

    Text Solution

    |

  2. Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=...

    Text Solution

    |

  3. ( sec 8 theta -1 )/( sec 4 theta -1) =

    Text Solution

    |

  4. Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-bet...

    Text Solution

    |

  5. ( cos alpha - cos beta )^(2) + ( sin alpha - sin beta )^(2) =

    Text Solution

    |

  6. Prove that: ((cosA+cos B)/(sinA-s inB))^n+((sinA+s inB)/(cosA-cosB))^n...

    Text Solution

    |

  7. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) and alpha, bet...

    Text Solution

    |

  8. Let alpha, beta be such that pi lt alpha - beta lt 3pi . If sin alpha...

    Text Solution

    |

  9. The roots of both the equation sin^(2) x + p sin x + q = 0 and cos^(2...

    Text Solution

    |

  10. If sin(120^0-alpha)=sin(120^0-beta),0<alpha,beta<pi, then find the rel...

    Text Solution

    |

  11. If A=130^(@) and x=sinA+cosA, then

    Text Solution

    |

  12. If alphaa n dbeta are the solutions of the equation at a ntheta+bs e c...

    Text Solution

    |

  13. If a cos 2 theta + b sin 2 theta =c has alpha and beta as its solut...

    Text Solution

    |

  14. and tan alpha tan beta =

    Text Solution

    |

  15. If alpha and beta are two distinct solutions of the equation a cos x +...

    Text Solution

    |

  16. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  17. If tan alpha = ( 1)/( 7 ), tan beta = ( 1)/( 3), then cos 2 alpha=

    Text Solution

    |

  18. If A = sin 45^(@)+ cos 45^(@) and B = sin 44^(@) + cos 44^(@) then

    Text Solution

    |

  19. If costheta=(acosphi+b)/(a+bcosphi). Show that : tan.(theta)/(2)=pmsqr...

    Text Solution

    |

  20. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |