Home
Class 12
MATHS
( cos alpha - cos beta )^(2) + ( sin alp...

`( cos alpha - cos beta )^(2) + ( sin alpha - sin beta )^(2) = `

A

`4 cos^(2) ( alpha + beta )//2`

B

` 4 sin^(2) ( alpha + beta )//2`

C

` 4 sin^(2) ( alpha -beta )//2`

D

`4 cos^(2) ( alpha - beta ) //2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( ( \cos \alpha - \cos \beta )^{2} + ( \sin \alpha - \sin \beta )^{2} \), we can follow these steps: ### Step 1: Expand the squares We start by expanding both squares in the expression: \[ ( \cos \alpha - \cos \beta )^{2} = \cos^{2} \alpha - 2 \cos \alpha \cos \beta + \cos^{2} \beta \] \[ ( \sin \alpha - \sin \beta )^{2} = \sin^{2} \alpha - 2 \sin \alpha \sin \beta + \sin^{2} \beta \] ### Step 2: Combine the expanded terms Now, we combine the results from Step 1: \[ ( \cos \alpha - \cos \beta )^{2} + ( \sin \alpha - \sin \beta )^{2} = (\cos^{2} \alpha + \sin^{2} \alpha) + (\cos^{2} \beta + \sin^{2} \beta) - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) \] ### Step 3: Use the Pythagorean identity Using the Pythagorean identity \( \cos^{2} \theta + \sin^{2} \theta = 1 \): \[ \cos^{2} \alpha + \sin^{2} \alpha = 1 \] \[ \cos^{2} \beta + \sin^{2} \beta = 1 \] So, we can substitute these into our expression: \[ 1 + 1 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) \] ### Step 4: Simplify the expression Now, we simplify the expression: \[ 2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) \] ### Step 5: Use the cosine of the difference identity Recall the cosine of the difference identity: \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Substituting this into our expression gives: \[ 2 - 2 \cos(\alpha - \beta) \] ### Step 6: Factor out the common term Factor out the common term: \[ 2(1 - \cos(\alpha - \beta)) \] ### Step 7: Use the identity for \(1 - \cos \theta\) Using the identity \(1 - \cos \theta = 2 \sin^{2} \left( \frac{\theta}{2} \right)\): \[ 1 - \cos(\alpha - \beta) = 2 \sin^{2} \left( \frac{\alpha - \beta}{2} \right) \] Substituting this back into our expression: \[ 2 \cdot 2 \sin^{2} \left( \frac{\alpha - \beta}{2} \right) = 4 \sin^{2} \left( \frac{\alpha - \beta}{2} \right) \] ### Final Result Thus, we have: \[ ( \cos \alpha - \cos \beta )^{2} + ( \sin \alpha - \sin \beta )^{2} = 4 \sin^{2} \left( \frac{\alpha - \beta}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

If cos alpha+cos beta=(3)/(2) and sin alpha+sin beta=(1)/(2) and theta is the arithmetic mean of alpha and beta, then sin2 theta+cos2 theta is equal to:

If cos alpha+cos beta=(3)/(2) and sin alpha+sin beta=(1)/(2) and theta is the arithmetic mean of alpha and beta, then sin2 theta+cos2 theta is equal to

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

Simplify the expression sqrt((1-cos alpha cos beta)^(2)-sin^(2)alpha sin^(2)beta)

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then (a) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / ( 2) (b) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / (4) (c) cos ^ (alpha) + cos ^ (2) beta + cos ^ (2) gamma = (3) / (2) (d) cos ^ (2) alpha + cos2 beta + cos2 gamma = -1

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

If cos alpha + cos beta+ cos gamma = 0 = sin alpha + sin beta+sin gamma show that sin^(2)alpha + sin^(2) beta + sin^(2) gamma =cos^(2)alpha +cos^(2) beta + cos^(2) gamma =3/2

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. ( sec 8 theta -1 )/( sec 4 theta -1) =

    Text Solution

    |

  2. Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-bet...

    Text Solution

    |

  3. ( cos alpha - cos beta )^(2) + ( sin alpha - sin beta )^(2) =

    Text Solution

    |

  4. Prove that: ((cosA+cos B)/(sinA-s inB))^n+((sinA+s inB)/(cosA-cosB))^n...

    Text Solution

    |

  5. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) and alpha, bet...

    Text Solution

    |

  6. Let alpha, beta be such that pi lt alpha - beta lt 3pi . If sin alpha...

    Text Solution

    |

  7. The roots of both the equation sin^(2) x + p sin x + q = 0 and cos^(2...

    Text Solution

    |

  8. If sin(120^0-alpha)=sin(120^0-beta),0<alpha,beta<pi, then find the rel...

    Text Solution

    |

  9. If A=130^(@) and x=sinA+cosA, then

    Text Solution

    |

  10. If alphaa n dbeta are the solutions of the equation at a ntheta+bs e c...

    Text Solution

    |

  11. If a cos 2 theta + b sin 2 theta =c has alpha and beta as its solut...

    Text Solution

    |

  12. and tan alpha tan beta =

    Text Solution

    |

  13. If alpha and beta are two distinct solutions of the equation a cos x +...

    Text Solution

    |

  14. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  15. If tan alpha = ( 1)/( 7 ), tan beta = ( 1)/( 3), then cos 2 alpha=

    Text Solution

    |

  16. If A = sin 45^(@)+ cos 45^(@) and B = sin 44^(@) + cos 44^(@) then

    Text Solution

    |

  17. If costheta=(acosphi+b)/(a+bcosphi). Show that : tan.(theta)/(2)=pmsqr...

    Text Solution

    |

  18. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  19. If tanbeta=costhetatanalpha, then "tan"^(2)(theta)/(2)=

    Text Solution

    |

  20. If tan^(2) (( pi )/( 4) + ( theta )/( 2)) = - ( a )/( b), then

    Text Solution

    |