Home
Class 12
MATHS
Let alpha, beta be such that pi lt alpha...

Let `alpha, beta` be such that `pi lt alpha - beta lt 3pi ` . If `sin alpha + sin beta = -(21)/( 65)` and `cos alpha + cos beta = - ( 27)/( 65)` then the value of `cos "" ( alpha - beta)/( 2)` is

A

`- (3)/( sqrt( 130))`

B

`( 3)/( sqrt( 130))`

C

`( 6)/( 65)`

D

`-( 6)/( 65)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's break it down as follows: ### Step 1: Given Equations We are given: 1. \( \sin \alpha + \sin \beta = -\frac{21}{65} \) 2. \( \cos \alpha + \cos \beta = -\frac{27}{65} \) ### Step 2: Square Both Equations We will square both equations to utilize the Pythagorean identity. **Squaring the first equation:** \[ (\sin \alpha + \sin \beta)^2 = \left(-\frac{21}{65}\right)^2 \] This expands to: \[ \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta = \frac{441}{4225} \] **Squaring the second equation:** \[ (\cos \alpha + \cos \beta)^2 = \left(-\frac{27}{65}\right)^2 \] This expands to: \[ \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta = \frac{729}{4225} \] ### Step 3: Add Both Equations Now, we add both squared equations: \[ \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta + \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta = \frac{441}{4225} + \frac{729}{4225} \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ 1 + 1 + 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{1170}{4225} \] This simplifies to: \[ 2 + 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{1170}{4225} \] ### Step 4: Simplify the Equation Now, isolate the term with sine and cosine: \[ 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{1170}{4225} - 2 \] Convert 2 into a fraction with a common denominator: \[ 2 = \frac{8450}{4225} \] Thus: \[ 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{1170 - 8450}{4225} = \frac{-7280}{4225} \] Divide by 2: \[ \sin \alpha \sin \beta + \cos \alpha \cos \beta = \frac{-3640}{4225} \] ### Step 5: Use Cosine of Difference Identity Using the identity \( \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \): \[ \cos(\alpha - \beta) = \frac{-3640}{4225} \] ### Step 6: Find Cosine Half Angle Now, we need to find \( \cos\left(\frac{\alpha - \beta}{2}\right) \). Using the half-angle identity: \[ \cos(\alpha - \beta) = 2 \cos^2\left(\frac{\alpha - \beta}{2}\right) - 1 \] Set this equal to our previous result: \[ \frac{-3640}{4225} = 2 \cos^2\left(\frac{\alpha - \beta}{2}\right) - 1 \] Rearranging gives: \[ 2 \cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{-3640}{4225} + 1 \] Convert 1 into a fraction: \[ 1 = \frac{4225}{4225} \] Thus: \[ 2 \cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{4225 - 3640}{4225} = \frac{585}{4225} \] Now divide by 2: \[ \cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{585}{8450} \] ### Step 7: Take Square Root Taking the square root: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = \pm \sqrt{\frac{585}{8450}} \] Since \( \alpha - \beta \) is between \( \pi \) and \( 3\pi \), the cosine value will be negative: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = -\sqrt{\frac{585}{8450}} \] ### Final Answer Thus, the value of \( \cos\left(\frac{\alpha - \beta}{2}\right) \) is: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = -\frac{3}{\sqrt{130}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be such that pi lt alpha -beta lt 3 pi. If sin alpha + sin beta =- (21)/(65) and cos alpha + cos beta =- (27)/(65) and if the value of cos "" (alpha - beta)/(2) =(-a)/(sqrtb), then a xx b=

Let alpha, beta be such that it pi < alpha - beta <3 pi . if sin alpha + sin beta =-21/65 and cos alpha+cos beta = -27 / 65 then the value of cos ((alpha-beta)/2) is

Le alpha and beta be such that pi

Let alpha, beta be such that pi lt alph-betalt3piif sin alpha+sinbeta=-21/65and cos alpha+cos beta =-27/65, then the value of cos""(alpha-beta)/(2), is

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

(cos alpha + cos beta) ^ (2) + (sin alpha + sin beta) ^ (2) =

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. Prove that: ((cosA+cos B)/(sinA-s inB))^n+((sinA+s inB)/(cosA-cosB))^n...

    Text Solution

    |

  2. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) and alpha, bet...

    Text Solution

    |

  3. Let alpha, beta be such that pi lt alpha - beta lt 3pi . If sin alpha...

    Text Solution

    |

  4. The roots of both the equation sin^(2) x + p sin x + q = 0 and cos^(2...

    Text Solution

    |

  5. If sin(120^0-alpha)=sin(120^0-beta),0<alpha,beta<pi, then find the rel...

    Text Solution

    |

  6. If A=130^(@) and x=sinA+cosA, then

    Text Solution

    |

  7. If alphaa n dbeta are the solutions of the equation at a ntheta+bs e c...

    Text Solution

    |

  8. If a cos 2 theta + b sin 2 theta =c has alpha and beta as its solut...

    Text Solution

    |

  9. and tan alpha tan beta =

    Text Solution

    |

  10. If alpha and beta are two distinct solutions of the equation a cos x +...

    Text Solution

    |

  11. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  12. If tan alpha = ( 1)/( 7 ), tan beta = ( 1)/( 3), then cos 2 alpha=

    Text Solution

    |

  13. If A = sin 45^(@)+ cos 45^(@) and B = sin 44^(@) + cos 44^(@) then

    Text Solution

    |

  14. If costheta=(acosphi+b)/(a+bcosphi). Show that : tan.(theta)/(2)=pmsqr...

    Text Solution

    |

  15. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  16. If tanbeta=costhetatanalpha, then "tan"^(2)(theta)/(2)=

    Text Solution

    |

  17. If tan^(2) (( pi )/( 4) + ( theta )/( 2)) = - ( a )/( b), then

    Text Solution

    |

  18. If tan ( A+B) = 3 tan A, then ( sin 2 ( A+B) + sin 2A)/( sin 2B) is e...

    Text Solution

    |

  19. If cos2B=(cos(A+C))/(cos(A-C)), then tan A, tan B, tan C are in

    Text Solution

    |

  20. If cot y= (sin x- sin z)/(cos z- cos x) then which of the following ...

    Text Solution

    |