Home
Class 12
MATHS
( 2 sec theta + 3 tan theta + 5 sin thet...

`( 2 sec theta + 3 tan theta + 5 sin theta - 7 cos theta +5)/( 2 tan theta + 3 sec theta +5 cos theta + 7 sin theta + 8 )=`

A

`tan"" ( theta)/( 2)`

B

`cot "" ( theta )/( 2)`

C

`sec "" ( theta )/( 2)`

D

`cosec "" ( theta )/( 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{2 \sec \theta + 3 \tan \theta + 5 \sin \theta - 7 \cos \theta + 5}{2 \tan \theta + 3 \sec \theta + 5 \cos \theta + 7 \sin \theta + 8} \] we will simplify both the numerator and the denominator step by step. ### Step 1: Rewrite Secant and Tangent in Terms of Sine and Cosine Recall that: - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) Substituting these into the expression gives: \[ \frac{2 \cdot \frac{1}{\cos \theta} + 3 \cdot \frac{\sin \theta}{\cos \theta} + 5 \sin \theta - 7 \cos \theta + 5}{2 \cdot \frac{\sin \theta}{\cos \theta} + 3 \cdot \frac{1}{\cos \theta} + 5 \cos \theta + 7 \sin \theta + 8} \] ### Step 2: Combine Terms in the Numerator The numerator becomes: \[ \frac{2 + 3 \sin \theta + 5 \sin \theta \cos \theta - 7 \cos^2 \theta + 5 \cos \theta}{\cos \theta} \] Combining like terms gives: \[ \frac{(2 + 5) + (3 + 5) \sin \theta - 7 \cos^2 \theta}{\cos \theta} = \frac{7 + 8 \sin \theta - 7 \cos^2 \theta}{\cos \theta} \] ### Step 3: Combine Terms in the Denominator The denominator becomes: \[ \frac{2 \sin \theta + 3 + 5 \cos^2 \theta + 7 \sin \theta + 8}{\cos \theta} \] Combining like terms gives: \[ \frac{(3 + 8) + (2 + 7) \sin \theta + 5 \cos^2 \theta}{\cos \theta} = \frac{11 + 9 \sin \theta + 5 \cos^2 \theta}{\cos \theta} \] ### Step 4: Simplify the Entire Expression Now, substituting the simplified numerator and denominator back into the expression gives: \[ \frac{7 + 8 \sin \theta - 7 \cos^2 \theta}{11 + 9 \sin \theta + 5 \cos^2 \theta} \] ### Step 5: Factor and Simplify Further Notice that \( \cos^2 \theta = 1 - \sin^2 \theta \). Substituting this gives: Numerator: \[ 7 + 8 \sin \theta - 7(1 - \sin^2 \theta) = 7 + 8 \sin \theta - 7 + 7 \sin^2 \theta = 8 \sin \theta + 7 \sin^2 \theta \] Denominator: \[ 11 + 9 \sin \theta + 5(1 - \sin^2 \theta) = 11 + 9 \sin \theta + 5 - 5 \sin^2 \theta = 16 + 9 \sin \theta - 5 \sin^2 \theta \] ### Final Expression Thus, the expression simplifies to: \[ \frac{7 \sin^2 \theta + 8 \sin \theta}{-5 \sin^2 \theta + 9 \sin \theta + 16} \] ### Conclusion This expression can be further analyzed or evaluated depending on the value of \(\theta\). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

 (2sec theta + 3 tan theta + 5 sin theta -7cos theta + 5) / (2tan theta + 3 sec theta + 5 cos theta + 7sin theta + 8) = (a) tan (theta / 2)  c  (ceta (theta / 2)                                (c) sec (theta / 2)         (d)     cosec (theta / 2)      Â

(2sec theta+3tan theta+5sin theta-7cos theta+5)/(2tan theta+3sec theta+5cos theta+7sin theta+8)=

If 5 sec theta- 3 tan theta=5 , then what is the value of 5 tan theta- 3 sec theta ?

Prove that: (sec theta + tan theta -1)/(tan theta - sec theta +1) = (cos theta)/(1- sin theta)

Prove : (sec theta+tan theta)(1-sin theta)=cos theta .

Prove that (sin theta + cos theta )( cosec theta - sec theta ) = cosec theta. Sec theta -2 tan theta

(sin theta-cos theta + 1) / (sin theta + cos theta-1) = sec theta + tan theta

(sin theta-cos theta + 1) / (sin theta + cos theta-1) = (1) / (sec theta-tan theta)

Prove that (sec theta+tan theta)(1-sin theta)=cos theta

sec theta+tan theta=5 then the value of sin theta+cos theta

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. If tan A and tan B are the roots of the quadratic equation x^(2)-px+q=...

    Text Solution

    |

  2. The value of (3 + cot 76^(@)cot 16^(@))/(cot 76^(@) + cot 16^(@))=

    Text Solution

    |

  3. ( 2 sec theta + 3 tan theta + 5 sin theta - 7 cos theta +5)/( 2 tan th...

    Text Solution

    |

  4. The value of 16 sin 144^@ sin 108^@ sin 72^@ sin 36^@ is equal to

    Text Solution

    |

  5. Find the value of:(1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8)...

    Text Solution

    |

  6. cos^(4) "" ( pi )/(8) + cos^(4) "" ( 3pi)/( 8 ) + cos^(4) "" ( 5pi )/(...

    Text Solution

    |

  7. The value of sqrt3cot20^(@)-4cos20^(@) is

    Text Solution

    |

  8. If If x cosalpha+y sinalpha=2a, x cos beta+y sinbeta=2aand 2sin""(alph...

    Text Solution

    |

  9. If A+B=pi/4, then (1+tan A) (1+tanB) is equal

    Text Solution

    |

  10. If f (x) = ( cot x )/( 1+ cot x ) and theta +phi = ( 5pi )/( 4), then ...

    Text Solution

    |

  11. If sin A + sin B =a and cos A + cos B = b, then cos ( A + B ) =

    Text Solution

    |

  12. If cos A + cos B =a, and sin A + sin B = b where a,b cancel(=)0, then ...

    Text Solution

    |

  13. Let cos(alpha+beta)=(4)/(5) and let sin(alpha-beta)=(5)/(13), where 0 ...

    Text Solution

    |

  14. If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+...

    Text Solution

    |

  15. If 2 cos theta = x + ( 1)/( x) , 2 cos phi = y + ( 1)/( y ), then cos...

    Text Solution

    |

  16. sin 12^(@) sin 48^(@) sin 54^(@) is equal to

    Text Solution

    |

  17. The value of sin"" ( pi )/(7 ) +sin"" ( 2pi )/( 7 ) + sin "" ( 3pi )/...

    Text Solution

    |

  18. cos"" ( 2pi )/( 7 ) + cos "" ( 4pi )/( 7 ) + cos "" ( 6pi )/( 7 )

    Text Solution

    |

  19. cos 0 + cos"" ( pi )/( 7 ) + cos "" ( 2pi )/(7) + cos"" ( 3pi)/(7)+ co...

    Text Solution

    |

  20. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |