Home
Class 12
MATHS
If 2 cos theta = x + ( 1)/( x) , 2 cos p...

If `2 cos theta = x + ( 1)/( x) , 2 cos phi = y + ( 1)/( y )`, then `cos ( theta - phi ) =`

A

`(x)/( y ) + ( y )/( x)`

B

`xy + ( 1)/( xy )`

C

`(1)/( 2) ((x)/( y ) + ( y )/( x))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( 2 \cos \theta = x + \frac{1}{x} \) 2. \( 2 \cos \phi = y + \frac{1}{y} \) We need to find \( \cos(\theta - \phi) \). ### Step 1: Express \( \cos \theta \) and \( \cos \phi \) From the first equation, we can express \( \cos \theta \): \[ \cos \theta = \frac{x + \frac{1}{x}}{2} \] From the second equation, we can express \( \cos \phi \): \[ \cos \phi = \frac{y + \frac{1}{y}}{2} \] ### Step 2: Use the cosine subtraction formula The cosine subtraction formula states: \[ \cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi \] ### Step 3: Find \( \sin \theta \) and \( \sin \phi \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find \( \sin \theta \) and \( \sin \phi \). First, we calculate \( \sin^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{x + \frac{1}{x}}{2}\right)^2 \] \[ = 1 - \frac{x^2 + 2 + \frac{1}{x^2}}{4} = \frac{4 - (x^2 + 2 + \frac{1}{x^2})}{4} = \frac{2 - x^2 - \frac{1}{x^2}}{4} \] Thus, \[ \sin \theta = \sqrt{\frac{2 - x^2 - \frac{1}{x^2}}{4}} = \frac{\sqrt{2 - x^2 - \frac{1}{x^2}}}{2} \] Similarly, for \( \sin \phi \): \[ \sin^2 \phi = 1 - \cos^2 \phi = 1 - \left(\frac{y + \frac{1}{y}}{2}\right)^2 \] \[ = \frac{2 - y^2 - \frac{1}{y^2}}{4} \] Thus, \[ \sin \phi = \frac{\sqrt{2 - y^2 - \frac{1}{y^2}}}{2} \] ### Step 4: Substitute into the cosine subtraction formula Now substituting \( \cos \theta \), \( \cos \phi \), \( \sin \theta \), and \( \sin \phi \) into the cosine subtraction formula: \[ \cos(\theta - \phi) = \left(\frac{x + \frac{1}{x}}{2}\right) \left(\frac{y + \frac{1}{y}}{2}\right) + \left(\frac{\sqrt{2 - x^2 - \frac{1}{x^2}}}{2}\right) \left(\frac{\sqrt{2 - y^2 - \frac{1}{y^2}}}{2}\right) \] ### Step 5: Simplify the expression This gives us: \[ \cos(\theta - \phi) = \frac{(x + \frac{1}{x})(y + \frac{1}{y})}{4} + \frac{\sqrt{(2 - x^2 - \frac{1}{x^2})(2 - y^2 - \frac{1}{y^2})}}{4} \] ### Final Result Thus, we can conclude that: \[ \cos(\theta - \phi) = \frac{(x + \frac{1}{x})(y + \frac{1}{y}) + \sqrt{(2 - x^2 - \frac{1}{x^2})(2 - y^2 - \frac{1}{y^2})}}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If 2cos theta=x+(1)/(x) and 2cos phi=y+(1)/(y) then

2cos theta=x+(1)/(x) and 2cos phi=y+(1)/(y) then (A)x^(n)+(1)/(x^(n))=2cos(n theta)n in Z(B)(x)/(y)+(y)/(x)=2cos(theta-phi)(C)xy+(1)/(Xy)=2cos(theta+phi)(D)x^(m)y^(n)+(1)/(x^(m)y^(n))=2(cos m theta+n phi),m,n in Z

If sin2 theta+sin2 phi=(1)/(2) and cos2 theta+cos2 phi=(3)/(2), then cos^(2)(theta-phi)=

If sin 2 theta + sin 2 phi =1/2 and cos 2 theta + cos 2 phi =3/2, then cos ^(2) (theta - phi)=

If sin theta+sin phi=(1)/(4) and cos theta+cos phi=(1)/(5) then value of sin(theta+phi) is

If sin theta - sin phi = a and cos theta + cos phi = b then prove that cos(theta + phi) = (a^(2)+b^(2) -2)/2

If sin theta=(1)/(2)cos phi=(1)/(3) then theta+phi belogs to where 0

If sin 2theta+sin 2phi=1//2 and cos2theta+cos 2phi=3//2 , then cos^(2)(theta-phi)=

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. Let cos(alpha+beta)=(4)/(5) and let sin(alpha-beta)=(5)/(13), where 0 ...

    Text Solution

    |

  2. If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+...

    Text Solution

    |

  3. If 2 cos theta = x + ( 1)/( x) , 2 cos phi = y + ( 1)/( y ), then cos...

    Text Solution

    |

  4. sin 12^(@) sin 48^(@) sin 54^(@) is equal to

    Text Solution

    |

  5. The value of sin"" ( pi )/(7 ) +sin"" ( 2pi )/( 7 ) + sin "" ( 3pi )/...

    Text Solution

    |

  6. cos"" ( 2pi )/( 7 ) + cos "" ( 4pi )/( 7 ) + cos "" ( 6pi )/( 7 )

    Text Solution

    |

  7. cos 0 + cos"" ( pi )/( 7 ) + cos "" ( 2pi )/(7) + cos"" ( 3pi)/(7)+ co...

    Text Solution

    |

  8. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  9. The average of sin 2^(@) , sin 4^(@) , sin 6^(@),"….." sin180^(@) is

    Text Solution

    |

  10. Let z = cos theta + isin theta. Then the value of sum(m=1)^(15) Im(z^(...

    Text Solution

    |

  11. sin"" (pi )/( n ) + sin "" ( 3pi)/( n ) + sin"" ( 5pi)/( n ) +"…."n te...

    Text Solution

    |

  12. sum(r=1)^(n-1)sin^(2)"" (r pi )/( n ) equals

    Text Solution

    |

  13. Given that ( 1+ sqrt( 1+ y )) tan y = 1+sqrt( 1-y) Then sin 4y is equ...

    Text Solution

    |

  14. For a positive integer n, let f(n) ( theta ) = ( tan "" ( theta )/( 2)...

    Text Solution

    |

  15. If 0^(@) lt theta lt 180^(@) , then sqrt( 2+ sqrt( 2+ sqrt("..."+ sqrt...

    Text Solution

    |

  16. The minimum value of tan B tan C in an acute angled triangle ABC is

    Text Solution

    |

  17. If u=(1+cos theta)(1+cos 2theta)-sin theta.sin 2theta, v=sin theta(1+c...

    Text Solution

    |

  18. If t(1) = ( tan x )^(cot x ) , t(2) = ( cot x ) ^(cot x ), t(3) = ( ta...

    Text Solution

    |

  19. If u = sqrt( a^(2) cos^(2) theta + b^(2) sin^(2) theta ) + sqrt( a^(2)...

    Text Solution

    |

  20. If cos x + cos y = a, cos 2x + cos 2y =b, cos 3x + cos 3y =c, then

    Text Solution

    |