Home
Class 12
MATHS
The average of sin 2^(@) , sin 4^(@) , s...

The average of `sin 2^(@) , sin 4^(@) , sin 6^(@),"….." sin180^(@)` is

A

`(1)/( 90) cos 1^(@)`

B

`(1)/(90) sin1^(@)`

C

`(1)/( 90)cot 1^(@)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the average of the series \( \sin 2^\circ, \sin 4^\circ, \sin 6^\circ, \ldots, \sin 180^\circ \), we can follow these steps: ### Step 1: Identify the series The series consists of sine values for angles that are multiples of 2 degrees, starting from 2 degrees up to 180 degrees. The angles can be expressed as: \[ \sin 2^\circ, \sin 4^\circ, \sin 6^\circ, \ldots, \sin 180^\circ \] ### Step 2: Determine the number of terms The angles form an arithmetic sequence where the first term \( a = 2^\circ \) and the common difference \( d = 2^\circ \). The last term is \( 180^\circ \). To find the number of terms \( n \), we can use the formula for the \( n \)-th term of an arithmetic sequence: \[ a_n = a + (n-1)d \] Setting \( a_n = 180^\circ \): \[ 180 = 2 + (n-1) \cdot 2 \] Solving for \( n \): \[ 180 - 2 = (n-1) \cdot 2 \\ 178 = (n-1) \cdot 2 \\ n - 1 = 89 \\ n = 90 \] ### Step 3: Use the sum of sine series formula The sum of a sine series can be calculated using the formula: \[ S = \frac{\sin\left(\frac{n \cdot \beta}{2}\right) \cdot \sin\left(\alpha + \frac{(n-1) \cdot \beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \] where: - \( \alpha = 2^\circ \) - \( \beta = 2^\circ \) - \( n = 90 \) Substituting the values: \[ S = \frac{\sin\left(\frac{90 \cdot 2}{2}\right) \cdot \sin\left(2 + \frac{(90-1) \cdot 2}{2}\right)}{\sin\left(\frac{2}{2}\right)} \] This simplifies to: \[ S = \frac{\sin(90^\circ) \cdot \sin(91^\circ)}{\sin(1^\circ)} \] Since \( \sin(90^\circ) = 1 \): \[ S = \frac{\sin(91^\circ)}{\sin(1^\circ)} \] ### Step 4: Simplify \( \sin(91^\circ) \) Using the identity \( \sin(91^\circ) = \cos(1^\circ) \): \[ S = \frac{\cos(1^\circ)}{\sin(1^\circ)} = \cot(1^\circ) \] ### Step 5: Calculate the average The average \( A \) of the series is given by: \[ A = \frac{S}{n} = \frac{\cot(1^\circ)}{90} \] ### Final Answer Thus, the average of the series \( \sin 2^\circ, \sin 4^\circ, \sin 6^\circ, \ldots, \sin 180^\circ \) is: \[ \boxed{\frac{\cot(1^\circ)}{90}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

The average value of sin2^@,sin4^@, sin6^@.........sin180^@ is (i) 1/90 cos1^0 (ii) 1/90 sin1^0 (iii) 1/90cot1^0 (iv) none of these

The arithmetic mean of the numbers 2sin2^(@), 4sin4^(@), 6 sin 6^(@), …………. 178 sin 178^(@), 180 sin 180^(@)

Find the value of sin1^(@).sin2^(@).sin3^(@)…sin180^(@) .

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 10^(@) .

Prove that 2sin2^(@)+4sin4^(@)+6sin6^(@)+...+180sin180^(@)=90cot1^(@)

Evaluate sin 1^@ sin 2^@ sin 3^@ ….sin 179^@ sin 180^@

The value of (sin180^(@)+cos90^(@))^(2) is :

Find the value of sin 1^@ *sin2^@* sin3^@........ Sin 180^@.........sin196^@ .

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. Let cos(alpha+beta)=(4)/(5) and let sin(alpha-beta)=(5)/(13), where 0 ...

    Text Solution

    |

  2. If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+...

    Text Solution

    |

  3. If 2 cos theta = x + ( 1)/( x) , 2 cos phi = y + ( 1)/( y ), then cos...

    Text Solution

    |

  4. sin 12^(@) sin 48^(@) sin 54^(@) is equal to

    Text Solution

    |

  5. The value of sin"" ( pi )/(7 ) +sin"" ( 2pi )/( 7 ) + sin "" ( 3pi )/...

    Text Solution

    |

  6. cos"" ( 2pi )/( 7 ) + cos "" ( 4pi )/( 7 ) + cos "" ( 6pi )/( 7 )

    Text Solution

    |

  7. cos 0 + cos"" ( pi )/( 7 ) + cos "" ( 2pi )/(7) + cos"" ( 3pi)/(7)+ co...

    Text Solution

    |

  8. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  9. The average of sin 2^(@) , sin 4^(@) , sin 6^(@),"….." sin180^(@) is

    Text Solution

    |

  10. Let z = cos theta + isin theta. Then the value of sum(m=1)^(15) Im(z^(...

    Text Solution

    |

  11. sin"" (pi )/( n ) + sin "" ( 3pi)/( n ) + sin"" ( 5pi)/( n ) +"…."n te...

    Text Solution

    |

  12. sum(r=1)^(n-1)sin^(2)"" (r pi )/( n ) equals

    Text Solution

    |

  13. Given that ( 1+ sqrt( 1+ y )) tan y = 1+sqrt( 1-y) Then sin 4y is equ...

    Text Solution

    |

  14. For a positive integer n, let f(n) ( theta ) = ( tan "" ( theta )/( 2)...

    Text Solution

    |

  15. If 0^(@) lt theta lt 180^(@) , then sqrt( 2+ sqrt( 2+ sqrt("..."+ sqrt...

    Text Solution

    |

  16. The minimum value of tan B tan C in an acute angled triangle ABC is

    Text Solution

    |

  17. If u=(1+cos theta)(1+cos 2theta)-sin theta.sin 2theta, v=sin theta(1+c...

    Text Solution

    |

  18. If t(1) = ( tan x )^(cot x ) , t(2) = ( cot x ) ^(cot x ), t(3) = ( ta...

    Text Solution

    |

  19. If u = sqrt( a^(2) cos^(2) theta + b^(2) sin^(2) theta ) + sqrt( a^(2)...

    Text Solution

    |

  20. If cos x + cos y = a, cos 2x + cos 2y =b, cos 3x + cos 3y =c, then

    Text Solution

    |