Home
Class 12
MATHS
If u = sqrt( a^(2) cos^(2) theta + b^(2)...

If `u = sqrt( a^(2) cos^(2) theta + b^(2) sin^(2) theta ) + sqrt( a^(2) sin^(2) theta + b^(2) cos ^(2) theta )` then the difference between maximum and minimum values of `u^(2)` is given by

A

`2( a^(2) + b^(2))`

B

`2 sqrt( a^(2) + b^(2))`

C

`( a+b)^(2)`

D

`( a- b)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the difference between the maximum and minimum values of \( u^2 \) given the expression \[ u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}, \] we can follow these steps: ### Step 1: Square the expression for \( u \) First, we square \( u \): \[ u^2 = \left( \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \right)^2. \] Using the identity \( (x + y)^2 = x^2 + y^2 + 2xy \): \[ u^2 = \left( a^2 \cos^2 \theta + b^2 \sin^2 \theta \right) + \left( a^2 \sin^2 \theta + b^2 \cos^2 \theta \right) + 2 \sqrt{(a^2 \cos^2 \theta + b^2 \sin^2 \theta)(a^2 \sin^2 \theta + b^2 \cos^2 \theta)}. \] ### Step 2: Simplify the expression Combining the first two terms: \[ u^2 = a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) + 2 \sqrt{(a^2 \cos^2 \theta + b^2 \sin^2 \theta)(a^2 \sin^2 \theta + b^2 \cos^2 \theta)}. \] Since \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ u^2 = a^2 + b^2 + 2 \sqrt{(a^2 \cos^2 \theta + b^2 \sin^2 \theta)(a^2 \sin^2 \theta + b^2 \cos^2 \theta)}. \] ### Step 3: Analyze the square root term Let \( x = a^2 \cos^2 \theta + b^2 \sin^2 \theta \) and \( y = a^2 \sin^2 \theta + b^2 \cos^2 \theta \). The product \( xy \) can be expressed as: \[ xy = (a^2 \cos^2 \theta + b^2 \sin^2 \theta)(a^2 \sin^2 \theta + b^2 \cos^2 \theta). \] ### Step 4: Find maximum and minimum values To find the maximum and minimum values of \( u^2 \), we can analyze the behavior of \( u^2 \) as \( \theta \) varies. 1. **Maximum value** occurs when \( \theta = \frac{\pi}{4} \): \[ u^2_{\text{max}} = 2(a^2 + b^2). \] 2. **Minimum value** occurs when \( \theta = 0 \): \[ u^2_{\text{min}} = (a + b)^2. \] ### Step 5: Calculate the difference Now, we find the difference between the maximum and minimum values: \[ \text{Difference} = u^2_{\text{max}} - u^2_{\text{min}} = [2(a^2 + b^2)] - [(a + b)^2]. \] Expanding \( (a + b)^2 \): \[ (a + b)^2 = a^2 + 2ab + b^2. \] Thus, the difference becomes: \[ \text{Difference} = 2(a^2 + b^2) - (a^2 + 2ab + b^2) = (2a^2 + 2b^2 - a^2 - 2ab - b^2) = (a^2 - 2ab + b^2) = (a - b)^2. \] ### Final Answer The difference between the maximum and minimum values of \( u^2 \) is: \[ \boxed{(a - b)^2}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (3) (FILL IN THE BLANKS)|2 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta^(2)) then the difference between the maximum and minimum values of u^(2) is given by : (a) (a-b)^(2) (b) 2sqrt(a^(2)+b^(2))(c)(a+b)^(2) (d) 2(a^(2)+b^(2))

If u=a^2cos^2theta+b^2sin^2theta+a^2sin^2theta+b^2cos^2theta then the difference between the maximum and minimum values of u^2 is given by- (a^2+b^2) b. 2sqrt(a^2+b^2) c. (a+b)^2 d. (a-b)^2

If : sin^(4)theta+cos^(4)theta+sin^(2)theta*cos^(2)theta=1-u^(2), "then" : u=

Show that the maximum and minimum values of sqrt(a^(2)cos^(2)theta + b^(2)sin^(2) theta) + sqrt(a^(2)sin^(2)theta + b^(2)cos^(2)theta) are sqrt(2(a^(2) +b^(2)) and a + b respectively.

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

The minimum value of 2 sin^2 theta + 3cos^2 theta is

Solve int((sin theta+sqrt(cos^(2)theta+2sin^(2)theta))^(n))/(sqrt(1+sin^(2)theta))cos theta d theta , where n ne -1 .

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)
  1. Let cos(alpha+beta)=(4)/(5) and let sin(alpha-beta)=(5)/(13), where 0 ...

    Text Solution

    |

  2. If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+...

    Text Solution

    |

  3. If 2 cos theta = x + ( 1)/( x) , 2 cos phi = y + ( 1)/( y ), then cos...

    Text Solution

    |

  4. sin 12^(@) sin 48^(@) sin 54^(@) is equal to

    Text Solution

    |

  5. The value of sin"" ( pi )/(7 ) +sin"" ( 2pi )/( 7 ) + sin "" ( 3pi )/...

    Text Solution

    |

  6. cos"" ( 2pi )/( 7 ) + cos "" ( 4pi )/( 7 ) + cos "" ( 6pi )/( 7 )

    Text Solution

    |

  7. cos 0 + cos"" ( pi )/( 7 ) + cos "" ( 2pi )/(7) + cos"" ( 3pi)/(7)+ co...

    Text Solution

    |

  8. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  9. The average of sin 2^(@) , sin 4^(@) , sin 6^(@),"….." sin180^(@) is

    Text Solution

    |

  10. Let z = cos theta + isin theta. Then the value of sum(m=1)^(15) Im(z^(...

    Text Solution

    |

  11. sin"" (pi )/( n ) + sin "" ( 3pi)/( n ) + sin"" ( 5pi)/( n ) +"…."n te...

    Text Solution

    |

  12. sum(r=1)^(n-1)sin^(2)"" (r pi )/( n ) equals

    Text Solution

    |

  13. Given that ( 1+ sqrt( 1+ y )) tan y = 1+sqrt( 1-y) Then sin 4y is equ...

    Text Solution

    |

  14. For a positive integer n, let f(n) ( theta ) = ( tan "" ( theta )/( 2)...

    Text Solution

    |

  15. If 0^(@) lt theta lt 180^(@) , then sqrt( 2+ sqrt( 2+ sqrt("..."+ sqrt...

    Text Solution

    |

  16. The minimum value of tan B tan C in an acute angled triangle ABC is

    Text Solution

    |

  17. If u=(1+cos theta)(1+cos 2theta)-sin theta.sin 2theta, v=sin theta(1+c...

    Text Solution

    |

  18. If t(1) = ( tan x )^(cot x ) , t(2) = ( cot x ) ^(cot x ), t(3) = ( ta...

    Text Solution

    |

  19. If u = sqrt( a^(2) cos^(2) theta + b^(2) sin^(2) theta ) + sqrt( a^(2)...

    Text Solution

    |

  20. If cos x + cos y = a, cos 2x + cos 2y =b, cos 3x + cos 3y =c, then

    Text Solution

    |