Home
Class 12
MATHS
(i) cos20^(@) + cos100^(@) + cos 140^(@)...

(i) `cos20^(@) + cos100^(@) + cos 140^(@) =0`
(ii) `sin 50^(@) - sin 70^(@) + sin 10^(@) =0`
(iii) `2 cos "" ( pi )/( 13) cos "" ( 9 pi )/( 13) + cos "" (3pi)/( 13) + cos "" ( 5pi )/( 13) =0`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the three parts step by step. ### Part (i): Prove that \( \cos 20^\circ + \cos 100^\circ + \cos 140^\circ = 0 \) 1. **Use the Cosine Addition Formula**: We can use the formula for the sum of cosines: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Set \( A = 20^\circ \) and \( B = 100^\circ \): \[ \cos 20^\circ + \cos 100^\circ = 2 \cos\left(\frac{20^\circ + 100^\circ}{2}\right) \cos\left(\frac{20^\circ - 100^\circ}{2}\right) \] 2. **Calculate the Averages**: \[ \frac{20^\circ + 100^\circ}{2} = 60^\circ, \quad \frac{20^\circ - 100^\circ}{2} = -40^\circ \] Thus, \[ \cos 20^\circ + \cos 100^\circ = 2 \cos(60^\circ) \cos(-40^\circ) \] 3. **Substitute Values**: We know \( \cos(60^\circ) = \frac{1}{2} \): \[ \cos 20^\circ + \cos 100^\circ = 2 \cdot \frac{1}{2} \cdot \cos(40^\circ) = \cos(40^\circ) \] 4. **Combine with \( \cos 140^\circ \)**: Now we add \( \cos 140^\circ \): \[ \cos 20^\circ + \cos 100^\circ + \cos 140^\circ = \cos(40^\circ) + \cos(140^\circ) \] 5. **Use the Cosine Addition Formula Again**: Now apply the cosine formula again: \[ \cos(40^\circ) + \cos(140^\circ) = 2 \cos\left(\frac{40^\circ + 140^\circ}{2}\right) \cos\left(\frac{40^\circ - 140^\circ}{2}\right) \] 6. **Calculate the New Averages**: \[ \frac{40^\circ + 140^\circ}{2} = 90^\circ, \quad \frac{40^\circ - 140^\circ}{2} = -50^\circ \] Thus, \[ \cos(40^\circ) + \cos(140^\circ) = 2 \cos(90^\circ) \cos(-50^\circ) \] 7. **Final Value**: Since \( \cos(90^\circ) = 0 \): \[ 2 \cdot 0 \cdot \cos(-50^\circ) = 0 \] Therefore, \( \cos 20^\circ + \cos 100^\circ + \cos 140^\circ = 0 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)|100 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0

The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)/(13) is

Prove that: 2cos (pi)/(13) cos (9 pi)/(13)(3 pi)/(13)(5 pi)/(13)=0

(cos pi) / (5) + (cos (2 pi)) / (5) + (cos (6 pi)) / (5) + (cos (7 pi)) / (5) = 0

The expression (cos(10 pi))/(13)+(cos(8 pi))/(13)+(cos(3 pi))/(13)+(cos(5 pi))/(13)

(sin ((pi) / (10)) + sin ((13 pi) / (10))) ((cos ^ (2) ((pi) / (6)) - cos ^ (2) (pi) / (10)))