Home
Class 12
MATHS
m cos ( theta + alpha ) = n cos ( theta ...

`m cos ( theta + alpha ) = n cos ( theta - alpha ) `, then `( m + n )/( m -n ) = ( cot theta )/ ( cot alpha )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m \cos(\theta + \alpha) = n \cos(\theta - \alpha) \) and prove that \( \frac{m+n}{m-n} = \frac{\cot \theta}{\cot \alpha} \), we can follow these steps: ### Step 1: Rewrite the Given Equation We start with the given equation: \[ m \cos(\theta + \alpha) = n \cos(\theta - \alpha) \] ### Step 2: Use the Cosine Addition and Subtraction Formulas Using the cosine addition and subtraction formulas, we can expand both sides: \[ m (\cos \theta \cos \alpha - \sin \theta \sin \alpha) = n (\cos \theta \cos \alpha + \sin \theta \sin \alpha) \] ### Step 3: Rearranging the Equation Rearranging gives us: \[ m \cos \theta \cos \alpha - m \sin \theta \sin \alpha = n \cos \theta \cos \alpha + n \sin \theta \sin \alpha \] Now, we can group the terms involving \( \cos \theta \) and \( \sin \theta \): \[ m \cos \theta \cos \alpha - n \cos \theta \cos \alpha = m \sin \theta \sin \alpha + n \sin \theta \sin \alpha \] This simplifies to: \[ (m - n) \cos \theta \cos \alpha = (m + n) \sin \theta \sin \alpha \] ### Step 4: Divide Both Sides Now, we divide both sides by \( (m - n) \sin \alpha \) (assuming \( m \neq n \)): \[ \frac{(m + n) \sin \theta}{(m - n) \sin \alpha} = \cos \theta \cos \alpha \] ### Step 5: Rearranging to Find the Desired Ratio Rearranging gives us: \[ \frac{m + n}{m - n} = \frac{\sin \theta \cos \alpha}{\sin \alpha \cos \theta} \] ### Step 6: Use the Definition of Cotangent Using the definitions of cotangent, we can rewrite the right-hand side: \[ \frac{m + n}{m - n} = \frac{\cot \theta}{\cot \alpha} \] ### Conclusion Thus, we have shown that: \[ \frac{m + n}{m - n} = \frac{\cot \theta}{\cot \alpha} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) FILL IN THE BLANKS|10 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) ( MULTIPLE CHOICE QUESTIONS)|100 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If m cos(theta+alpha)=n cos(theta-alpha), then (m-n)cot alpha=

If m cos(theta+alpha)=n cos(theta-alpha), then (m-n)cot alpha=

Statement (1): If mcos(theta+alpha)= n cos(theta-alpha) then tan theta * tan alpha = (m+n)/(m-n) Statement (2): If sin(alpha+beta)/sin(alpha-beta) = (a+b)/(a-b) then tan alpha * cot beta = a/b Which of the above statements is correct? (i) only I (ii) only II (iii) both I and II (iv) Neither I nor II

cos m theta-sin n theta=0

If sin(theta+alpha)=n sin(theta-alpha) , prove that cot theta=(n-1)/(n+1) cot alpha .

If cos ec theta-cot theta=alpha, then cot theta is

If cot alpha+tan alpha=m and (1)/(cos alpha)-cos alpha=n, then