Home
Class 12
MATHS
if A+B+C = pi then sin^(2)""(A)/(2)+sin...

if A+B+C = `pi` then `sin^(2)""(A)/(2)+sin^(2)""(B)/(2) + sin^(2)""(C )/(2)=`

A

`1-2cos "" (A)/(2) cos ""(B)/(2)cos""(C )/(2)`

B

`1-2sin "" (A)/(2) sin ""(B)/(2)sin""(C )/(2)`

C

`1+cos "" (A)/(2) cos ""(B)/(2)cos""(C )/(2)`

D

`1+sin "" (A)/(2) sin ""(B)/(2)sin""(C )/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} \) given that \( A + B + C = \pi \). ### Step-by-Step Solution: 1. **Use the Identity for Sine Squared**: We can use the identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] Therefore, we can express \( \sin^2 \frac{A}{2} \), \( \sin^2 \frac{B}{2} \), and \( \sin^2 \frac{C}{2} \) as: \[ \sin^2 \frac{A}{2} = \frac{1 - \cos A}{2}, \quad \sin^2 \frac{B}{2} = \frac{1 - \cos B}{2}, \quad \sin^2 \frac{C}{2} = \frac{1 - \cos C}{2} \] 2. **Combine the Expressions**: Now, we can add these three expressions: \[ \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = \frac{1 - \cos A}{2} + \frac{1 - \cos B}{2} + \frac{1 - \cos C}{2} \] This simplifies to: \[ = \frac{3}{2} - \frac{\cos A + \cos B + \cos C}{2} \] 3. **Use the Cosine Sum Identity**: Since \( A + B + C = \pi \), we can use the identity for the sum of cosines: \[ \cos A + \cos B + \cos C = -1 - 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \] Substituting this into our expression gives: \[ \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = \frac{3}{2} - \frac{-1 - 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{2} \] 4. **Simplify Further**: This becomes: \[ = \frac{3}{2} + \frac{1}{2} + 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \] \[ = 2 + 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \] 5. **Final Expression**: Thus, we can express the final result as: \[ \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \] ### Conclusion: The value of \( \sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} \) is: \[ 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) TRUE AND FALSE|8 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) FILL IN THE BLANKS|1 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

is A+B+C=pi, prove that sin((A)/(2))sin((B)/(2))sin((C)/(2))>=-1

If A+B+C=pi then prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))-1=4sin((pi-A)/(4))sin((pi-B)/(4))sin((pi-C)/(4))

(sin2A + sin2B + sin2C) / (sin A + sin B + sin C) = 8sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

A + B + C = 180 ^ (@) rArr (sin ^ (2) A) / (2) + (sin ^ (2) B) / (2) + (sin ^ (2) C) / (2) =

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))

If A+B+C=pi and sin(A+(C)/(2))=k sin((C)/(2)) then (tan A)/(2)(tan B)/(2) is

sin ^ (2) ((A) / (2)) + sin ^ (2) ((B) / (2)) + sin ^ (2) ((C) / (2)) = 1-sin (( A) / (2)) sin ((B) / (2)) sin ((C) / (2))

ML KHANNA-TRIGONOMETRY RATIOS AND IDENTITIES-PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)
  1. (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos, A/2 cos, B...

    Text Solution

    |

  2. if A+B+C=pi then sin^(2) A + sin^(2) B - sin^(2) C =

    Text Solution

    |

  3. if A+B+C = pi then sin^(2)""(A)/(2)+sin^(2)""(B)/(2) + sin^(2)""(C )/...

    Text Solution

    |

  4. If A+B+C=180^(@), then prove that cos^(2)(A)/(2)+cos^(2)(B)/(2)+cos^(2...

    Text Solution

    |

  5. If alpha + beta + gamma, pi, then the value of sin ^(2) alpha + sin ^...

    Text Solution

    |

  6. If alpha+beta+gamma=2pi, prove that : cos^2 alpha + cos^2 beta + cos^2...

    Text Solution

    |

  7. In any triangle ABC, if ( sin A + sin B + sin C ) ( sin A + sin B - si...

    Text Solution

    |

  8. If A,B,C are the angles of a triangle, then sin^(2) A + sin^(2) B + si...

    Text Solution

    |

  9. cos^(2) A + cos^(2) B + cos^(2) C =

    Text Solution

    |

  10. sin^(2) A + sin ^(2) B +sin^(2) C =

    Text Solution

    |

  11. If A+B+C=pi , prove that : sin^2, A/2 + sin^2, B/2 -sin^2, C/2 =1-2 co...

    Text Solution

    |

  12. If : cos^(2) A + cos^(2) B + cos^(2) C = 1, "then" : Delta ABC is

    Text Solution

    |

  13. In a !ABC if sin A cos B = 1/4 and 3 tan A = B , then the triangle is

    Text Solution

    |

  14. If any /\ABC, tanA+tanB+tanC=6 and tanAtanB=2, then the values of tanA...

    Text Solution

    |

  15. If in a triangle ABC, tan A + tan B + tanC has the value 6, then the v...

    Text Solution

    |

  16. In a triangle ABC if tanA: tan B : tan C = 3:4:5 then the value of sin...

    Text Solution

    |

  17. If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

    Text Solution

    |

  18. If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC =...

    Text Solution

    |

  19. In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cos""(C)/(2)is

    Text Solution

    |

  20. " If alpha=(2 pi)/(7) ,then the value of tan alpha tan2 alpha+tan2 alp...

    Text Solution

    |